Table of Contents

THOMAS F. DANIEL: Chromosome Numbers of Some Cultivated Acanthaceae with Notes on Chromosomal Evolution in the Family .......................................................... 319

WOJCIECH J. PULAWSKI AND RAMASAMY GANDHI GRACY: Redescription of two Indian Stigmata (Hymenoptera: Crabronidae) ............................................................... 333

JUAN M. NIETO NAFRÍA AND JAIME ORTEGO: Macrosiphum edrossi Essig, 1953 (Hemiptera, Aphididae): Second World Record, Redescription, and Biological and Taxonomic Notes ................................................................. 341

WILLIAM J. POLY: Range Extension for the Elusive New England Medicinal Leech, Macrobella sestertia Whitman, 1886 (Hirudinida: Macrobellidae), in South Carolina, U.S.A., with Notes on Morphology, Coloration, and Biology ........................................... 347

GARY C. WILLIAMS: Illustrated Key and Synopses of Shallow-water Gorgonians and Pennatulaceans of the Central Philippines, Part 2 (Cnidaria: Anthozoa: Octocorallia) ...................................................................................................................... 361

ALAN E. LEVITON, CAMERON D. SILER, JEFFREY L. WEINELL, AND RAFE M. BROWN: Synopsis of the Snakes of the Philippines: A Synthesis of Data from Biodiversity Repositories, Field Studies, and the Literature ....................................................... 399

INDEX to Volume 64, Parts 1-3, Articles 1-14 .............................................................. 469

March 29, 2018 * Volume 64 * Numbers 9-14
Institute for Biodiversity Science & Sustainability
SCIENTIFIC PUBLICATIONS

PUBLISHER: Shannon Bennett, Ph.D.
Chief of Science and Research Collections
California Academy of Sciences

EDITORS

Alan E. Leviton, Ph.D., Editor
Katherine Piatek, M.A., Managing Editor
Michael T. Ghiselin, Ph.D., Associate Editor
Tomio Isawamoto, Ph.D., Associate Editor
Gary C. Williams, Ph.D., Associate Editor & Website Coordinator

COVER IMAGE

Cover Design
Gary C. Williams & Alan E. Leviton
California Academy of Sciences

ISSN 0068–547X

INSTRUCTIONS TO AUTHORS

Authors planning to submit papers for consideration for publication in the Academy's Proceedings, Occasional Papers, or Memoir series must follow the directions given below in preparing their submissions. Under some circumstances, authors may not be able to comply with all the computer-based requirements for submission. Should this be the case, please contact the Editor or Associate Editor for guidance on how best to present the materials.

The Scientific Publications Office of the Academy prepares all materials for publication using state-of-the-art, computer-assembled, page-description-language software. Final copy is sent to the printer for printing. The printer does not modify the files sent for printing. Therefore, it falls to the authors to check carefully page proof when it is returned for approval. Ordinarily, all communication with authors is done via email and galley and page proofs of manuscripts, including figures, are transmitted at attach-

ments to email communications. Again, exceptions to this will be made in the event that an author is unable to communicate in this way.

Authors are expected to provide digital copies of both manuscript text files and images, as well as a paper printout of their manuscript. Please note the following.

Text: Text can be in Microsoft Word, as a Word document file, WordPerfect, as well as a .wps document file, or, best of all, as an "rtf" (rich text format) file, which can be produced by most word processors. Authors who use non-standard fonts must include file copies of those fonts so that their symbols can be reproduced accurately. However, it is strongly recommended that the type style "New Times Roman" be used throughout and that the Symbols and Bookshelf Symbol 1 and 3 fonts be used for such items as θ, ϕ, Ω, etc. Note, words must not be typed in all capital letters either in the text or bibliography; small caps are acceptable.

Images: Images should be in either JEP (JPEG), or TIF (TIFF) format. Resolution for grayscale images should be at least 600 dpi (1200 dpi if possible, especially for photomicrographs), and 300 dpi (600 dpi acceptable) for color. All images should be sized so that none exceed a maximum print size of 5.5" x 7.875" (140 mm x 200 mm).

Tables: Our processing software allows for direct importation of tables. This reduces the chances for errors being introduced during the preparation of manuscripts for publication. However, in order to use this feature, tables must be prepared in Microsoft Excel or in Microsoft Word using Word's table feature; do not prepare tables using tabs or space bars. Complex tables not prepared as described above will be returned to the author for revision.

Digital files: IBM or MAC formatted disks will be accepted subject to the following conditions: (a) floppy disks must not exceed 1.44 mb and (b) zip disks, preferably IBM format, must not exceed 100 mb. Authors are encouraged to submit their digital files on CD-ROM (CD-R formatted disks NOT CD-RW) inasmuch as these can be read by nearly all CD-ROM drives.

File naming protocols: To facilitate the handling of digital files submitted by authors, the following file-naming conventions are to be followed: text files should bear the author's last name (in the case of multiple authors, only the first author's name) followed by a space and a date in the format month/day/year (e.g., 0603 for June 2003) to yield a file name such as Gosliner1 0603.doc for Goslinger1 or Williams 0403.txt. If an author has submitted two or more manuscripts and must distinguish between them, then the naming should include an additional numeral: Gosliner1 0603.doc (or stf) for the first manuscript, Gosliner2 0603.doc (or stf) for the second. Figures should follow similar conventions, as follows: Gosliner F1 0603.tif, Gosliner F2 0603.tif, for figures in the first manuscript and, if more than one manuscript, then Gosliner1 F1 0603.tif etc. for the figures associated with the first manuscript and Gosliner2 F1 0603.tif for those with the second. Following these conventions it is assured that figures submitted by one author are always main-
tained distinct from those submitted by another. Tables submitted as Excel files should follow the same naming conventions except the file type designation will be "xlsx" e.g., Gosliner T1 0603.xls. Please note that extraneous periods are omitted in file names.

Bibliography format: Three bibliographic styles are accommodated in the Academy’s scientific publications, one commonly used in scientific journals publishing papers in systematic and evolutionary biology, a second used mainly in the geological literature, and lastly, the format most commonly used in the humanities by historians of science. On request, the author will be sent a style sheet that includes samples of the three formats. Authors are also encouraged to examine a copy of the latest published Pro-
ceedings. In all instances, however, authors should not abbreviate journal names but spell them out completely. For books, authors’ names must include the publisher and city of publication. It is recommended that the total number of pages in the book also be given.

SUBSCRIPTIONS/EXCHANGES

The Proceedings series of the California Academy of Sciences is available by exchange or subscription. For information on exchanges, please contact the Academy Librarian via regular mail addressed to the Librarian, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118 U.S.A. or via email addressed to hvagner@calacademy.org. Subscription requests, including information on rates, should be addressed to Scientific Publications, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118 U.S.A. or via email to the Editors at aleviton@calacademy.org or gwlliams@calacademy.org

Subscription price for 2018: $75 (U.S.) includes mailing to U.S. and Canadian addresses and $85 to all others.


COMMENTS

Address editorial correspondence or requests for pricing information to the Editor, Scientific Publications Office, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118 U.S.A. or via email to the Editor, Scientific Publications, aleviton@calacademy.org or gwlliams@calacademy.org

Copyright © 2018 by the California Academy of Sciences
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without permission in writing from the publisher.
Chromosome Numbers of Some Cultivated Acanthaceae with Notes on Chromosomal Evolution in the Family

Thomas F. Daniel

Department of Botany, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA. E-mail: tdaniel@calacademy.org

Chromosome numbers are reported for 22 species of Acanthaceae, all of which pertain to plants under cultivation or from wild-collected plants that are cultivated. Counts for nine species are the first reports of chromosome numbers for them: *Barleria obtusa* (*n*= 20 or 21), *Dyschoriste thunbergii flora* (*n*= 15), *Justicia scheidweileri* (*n*= 14), *Megaskepasma erythrochlamys* (*n*= ca. 26), *Odontonema callistachyum* (*n*= ca. 63 and *n*= ca. 42–50), *Pseuderanthemum graciliflorum* (*n*= 21), *Strobilanthes hamiltoniana* (*n*= 11), *Thunbergia mysorensis* (*n*= 32–34), and *Whitfieldia elongata* (*n*= ca. 21). A rationale is offered for providing approximate numbers for several of the meiotic (haploid) counts reported. Basic chromosome numbers and probable occurrences of both polyploidy and dysploidy are discussed for genera and for some suprageneric taxa based on recent phylogenetic studies.

**Keywords:** meiotic counts, approximate counts, basic numbers, polyploidy, dysploidy

Meiotic chromosome counts are reported for 22 species in 15 genera of Acanthaceae: *Barleria, Brillantaisia, Crossandra, Dyschoriste, Graptophyllum, Justicia, Megaskepasma, Odontonema, Peristrophe, Pseuderanthemum, Ruellia, Sanchezia, Strobilanthes, Thunbergia, and Whitfieldia*. All of the species studied here are commonly cultivated for ornament (see Fig. 3 [p. 329] for sample photos), except for *Ruellia costaricensis*, which is only rarely grown. These counts were made over a period of 12 years in collaboration with the late T.I. Chuang, an expert cytologist, and Fei-Mei Chuang, a gifted microscopist and technician. Several of them were not included in our series of publications on chromosomes of Acanthaceae (e.g., Daniel and Chuang 1989, 1993, 1998; Daniel et al. 1990) because they were approximate determinations, which we had hoped to clarify with additional sampling. Because it is unlikely that additional sampling will be undertaken by us, I felt it was important to make our results known. At least some of the approximate counts can be useful for determining ploidal levels of the plants studied.

Daniel (2000a) discussed some patterns of chromosome numbers with respect to suprageneric relationships among Acanthaceae. Since then, additional chromosome number reports and subsequent studies of phylogenetic relationships based on DNA sequence data allow for a broader perspective of and some additional hypotheses on the evolution of chromosome numbers among numerous genera and suprageneric taxa in the family (e.g., Tripp et al. 2013; Kiel et al. 2017). Herewith, discussions of chromosome number patterns within some of these taxa and others are reviewed, updated, and augmented, especially with respect to presumed polyploidy, dysploidy, and basic numbers.
Floral buds and herbarium vouchers were collected from gardens and native habitats. Buds were fixed, stained, and studied as described previously (e.g., Daniel and Chuang 1998; Daniel 2000a). For ease of comparative purposes, all references to previous counts are noted here as haploid/gametic \( n \) numbers, regardless of whether they were originally reported as diploid/somatic \( 2n \) or haploid numbers. Identifications of voucher specimens, when cited in publications of chromosome counts by other authors, have not been reconfirmed, except where noted. Camera lucida drawings were made of our preparations, and at least one representative cell of each species for which an exact count was obtained is provided in Figures 1 and 2. Because our results over the years agree with

**Figure 1** (upper right). Chromosomes of Acanthaceae in pollen mother cells. A. *Dyschoriste thunbergii flora*, metaphase II (only half of cell shown), \( n = 15 \). B. *Brillantaisia owariensis*, telophase I, \( n = 16 \) (with one lagging chromosome toward “upper” pole). C. *Brillantaisia owariensis*, metaphase I, \( n = 16 \). D. *Ruellia elegans*, diakinesis (showing nucleolus, \( n \)), \( n = 17 \). E. *Crossandra infundibuliformis*, metaphase I, \( n = 19 \). F. *Ruellia dipteracanthus*, metaphase I, \( n = 17 \). G. *Justicia scheidweileri*, metaphase I, \( n = 14 \). Chromosomes shown in outline only are touching or overlapping other chromosomes. Scale applies to all figures. See Table 1 for voucher information.

**Figure 2** (lower right). Chromosomes of Acanthaceae in pollen mother cells. A. *Ruellia costaricensis*, telophase II, \( n = 17 \). B. *Strobilanthes hamiltoniana*, telophase I (distance between poles of cell reduced for presentation), \( n = 11 \). C. *Pseuderanthemum graciliflorum*, metaphase I, \( n = 21 \). D. *Peristrophe speciosa*, metaphase I, \( n = 30 \). E. *Strobilanthes hamiltoniana*, diakinesis (showing nucleolus, \( n \)), \( n = 11 \). Chromosomes shown in outline only are touching or overlapping other chromosomes. Scale applies to all figures. See Table 1 for voucher information.
the observation of Sugiura (1939:207) that the “pollen mother cells of Acanthaceae are much larger than those of other families, while the chromosomes they contain are much smaller in comparison,” the entire cell is not shown in the drawings. After squashing, pollen mother cells from which counts were obtained herein vary from 58 to 204 μm at their widest extent (number cells = 34, mean = 186 μm). In the discussions below, basic numbers (x) refer to the lowest haploid number of a polyploid series, whereas an ancestral basic number refers to the probable original chromosome number of a taxon.

For an estimate of pollen viability in species of *Odontonema*, grains from herbarium vouchers of the two collections of *O. callistachyum* for which approximate counts were determined were mounted in analine blue in lactophenol and examined with a compound microscope after 24 hours (cf. Daniel 2007). An additional collection of a species of *Odontonema* for which an exact chromosome number had been previously determined (i.e., \( n = 21 \) for Daniel & Bartholomew 4991, a collection of *O. tubaeforme*; Daniel et al. 1990) was also studied for pollen stainability as a control. For each of the three samples all pollen encountered during nine non-overlapping sweeps of the mounted media was scored as either stained or not stained, and the resulting percentages were determined.

**RESULTS AND DISCUSSIONS**

Table 1 summarizes the 22 species studied, sources of plants used, chromosome numbers determined, and voucher information. A discussion of the results for counts in each genus is provided below. Common reasons for approximate counts include: clumping of chromosomes, heavily stained cytoplasm, and meiotic irregularities (e.g., see *Odontonema* below).

**Barleria** L.— *Barleria* consists of about 270 species concentrated in Africa, but with native occurrences in Asia and the New World. The approximate count of \( n = 20 \) or \( 21 \) is the first for *B. obtusa* Nees, a species native to southern Africa. Although a diversity of numbers has been reported for 18 species, counts of \( n = 20 \) have been reported for 16 of them. Counts of \( n = 21 \) have been reported for two species, *B. cristata* L. and *B. strigosa* Willd. (De 1966); however, all or most other counts for these two species are \( n = 20 \). If accurate, counts of \( n = 21 \) for these species probably represent dysploidy within the species. As noted by Daniel and Chuang (1998), \( x = 20 \) would appear to be the likely ancestral basic number for this genus.

**Brillantaisia** P. Beauv.— Thirteen species of *Brillantaisia* are known from tropical Africa and Madagascar. Chromosome counts of \( n = 16 \) have been reported for two of them, *B. lamium* (Nees) Benth. and *B. owariensis* P. Beauv. (Mangenot and Mangenot 1958, 1962; the latter species reported as *B. nitens* Lindau). Our count of \( n = 16 \) for the tropical African *B. owariensis* (Fig. 1B, C) confirms the previous counts for this species.

**Brillantaisia** pertains to Ruellieae: Hygrophilinae along with one other genus, *Hygrophila* R. Br., which contains nearly 100 species. A chromosome number of \( n = 16 \) has been reported for six of the 11 species of *Hygrophila* studied to date (Tripp et al. 2013; Cordeiro et al. 2017), including species native to Africa (e.g., *H. senegalensis* (Nees) T. Anders.; Miege 1962), Asia (e.g., *H. polysperma* T. Anders.; Grant 1955), and the New World (e.g., *H. costata* Nees & T. Nees; Grant 1955, as *H. lacustris* (Schldl. & Cham.) Nees). An ancestral basic number of \( x = 16 \) is possible for both *Brillantaisia* and the subtribe; however, the diversity of other numbers reported for *Hygrophila* (summarized by Tripp et al. 2013) reveal possible euploidy based on \( x = 6 \) and probable dysploidy as well.

**Crossandra Salisb.**— *Crossandra* consists of about 45 species native to Africa, Madagascar, Arabia, India, and Sri Lanka. Our count of \( n = 19 \) for *C. infundibuliformis* (L.) Nees (Fig. 1E), a species occurring in both Africa and the Indian Subcontinent, agrees with nine of the 11 previous
Table 1. Species of Acanthaceae, gametic chromosome numbers, vouchers at CAS, and sources for plants studied.

<table>
<thead>
<tr>
<th>Species</th>
<th>Chromosome number</th>
<th>Voucher: collection (herbarium)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barleria obtusa</td>
<td>20 or 21</td>
<td>Daniel s.n. (CAS 715914)</td>
<td>Mildred E. Mathias Botanical Garden, California, USA</td>
</tr>
<tr>
<td>Brillantaisia owariensis</td>
<td>16</td>
<td>Daniel s.n. (CAS 966639, 966640)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Crossandra infundibuliformis</td>
<td>19</td>
<td>Daniel s.n. (CAS 965238)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Dyschoriste thunbergiiflora</td>
<td>15</td>
<td>Daniel s.n. (CAS 966742)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Graptophyllum pictum</td>
<td>31 or 32</td>
<td>Almeda et al. 6377 (CAS 811770)</td>
<td>cultivated in Chiriquí, Panama</td>
</tr>
<tr>
<td>Justicia fulvicoma</td>
<td>ca. 14</td>
<td>Daniel &amp; Baker 3637 (CAS 745146)</td>
<td>wild collected in Nuevo León, Mexico</td>
</tr>
<tr>
<td>Justicia scheidweileri</td>
<td>14</td>
<td>Daniel s.n. (CAS 966739)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Megaskepasma erythroclamys</td>
<td>ca. 26</td>
<td>Daniel s.n. (CAS 1242912)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Odontonema callistachyum</td>
<td>ca. 63</td>
<td>Daniel &amp; Bartholomew 5013 (CAS 754858)</td>
<td>wild collected in Chiapas, Mexico</td>
</tr>
<tr>
<td>Odontonema callistachyum</td>
<td>ca. 42-50</td>
<td>Daniel 5368 (CAS 937005)</td>
<td>wild collected in Guerrero, Mexico</td>
</tr>
<tr>
<td>Odontonema tubaeforme</td>
<td>ca. 20-30</td>
<td>Daniel et al. 5463 (CAS 768060)</td>
<td>wild collected in Coclé, Panama</td>
</tr>
<tr>
<td>Peristrophe speciosa</td>
<td>30</td>
<td>Daniel s.n. (CAS 966122)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Pseuderanthemum graciliflorum</td>
<td>21</td>
<td>Daniel s.n. (CAS 967559, 967560)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Ruellia costaricensis</td>
<td>17</td>
<td>Daniel 8158cv (CAS 966638)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Ruellia dipteracanthus</td>
<td>17</td>
<td>Daniel s.n. (CAS 966651)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Ruellia elegans</td>
<td>17</td>
<td>Daniel s.n. (CAS 965239)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Ruellia makoyana</td>
<td>ca. 17</td>
<td>Daniel s.n. (CAS 842990)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Sanchezia parvibracteata</td>
<td>ca. 36-40</td>
<td>Breedlove &amp; Daniel 71315 (CAS 809713)</td>
<td>Jardín Botánico Dr. Faustino Miranda Chiapas, Mexico</td>
</tr>
<tr>
<td>Strobilanthes hamiltonianiana</td>
<td>11</td>
<td>Daniel s.n. (CAS 1242913)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Thunbergia erecta</td>
<td>ca. 30</td>
<td>Daniel et al. 6237 (CAS 838854)</td>
<td>cultivated in Cartago, Costa Rica</td>
</tr>
<tr>
<td>Thunbergia grandiflora</td>
<td>ca. 28</td>
<td>Breedlove &amp; Daniel 70841 (CAS 809093)</td>
<td>cultivated in Chiapas, Mexico</td>
</tr>
<tr>
<td>Thunbergia mysorensis</td>
<td>32-34</td>
<td>Daniel s.n. (CAS 1242914)</td>
<td>San Francisco Conservatory of Flowers, California, USA</td>
</tr>
<tr>
<td>Whitfieldia elongata</td>
<td>ca. 21</td>
<td>Daniel &amp; Butterwick 6636 (CAS 872847)</td>
<td>Waimea Arboretum and Botanical Garden, Hawaii, USA</td>
</tr>
</tbody>
</table>
counts for this species (sometimes reported as *C. undulaefolia* Salisb.). The other two counts for this species are both *n* = 30, and possibly represent counts for a morphologically similar taxon, *C. nilotica* Oliver, which is often misidentified, and for which *n* = 30 has been reported and confirmed (see Daniel and Chuang 1998). Counts have been reported for two other species of *Crossandra*, *C. flava* Hook. and *C. pungens* Lindau, both of which are *n* = 21 (Daniel and Chuang 1998). De (1966) suggested *x* = 10 as a basic number for *Crossandra*. This number is not currently known among species of the genus, but based on counts reported to date for four species, it seems possible and would indicate both polyploidy and dysploidy among species.

**Dyschoriste Nees.**— *Dyschoriste* (including *Apassalus* Kobuski, *Chaetacanthus* Nees, and *Sautiera* Deene.) is a genus of 80 or more species that occur in tropical and warm-temperate regions of the Americas, Africa, Madagascar, and Asia. Our count of *n* = 15 for *D. thunbergiiflora* (S. Moore) Lindau (Fig. 1A) is the first count for this species of eastern Africa, and the first count for an African representative of genus (*D. nagchana* (Nees) Bennet occurs in both Africa and Asia, but only plants from the latter region have apparently been studied cytologically). Our count for an African species demonstrates the occurrence of a common number (*n* = 15) throughout the distributional range of the genus: North America (6 species with this number; Daniel 2000a; Daniel et al. 1990), South America (1 species; Piovano and Bernardello 1991), and Asia (1 species; Govindarajan and Subramanian 1985). This same number occurs in three of the “geographically cohesive” and weakly to strongly supported New World clades of the genus as revealed by the molecular phylogenetic studies of Chumchim et al. (2015). Counts of both *n* = 15 (Govindarajan and Subramanian 1985) and *n* = 30 (e.g., Saggoo and Bir 1982) have been reported for *Dyschoriste nagchana* (as *D. depressa* Nees) in Asia, and the only count for *D. hirsutissima* (Nees) Kuntze from Mexico is *n* = 30 (Daniel et al. 1990). Thus, polyploidy within a species and also possibly at the specific level is evident in the genus. A basic number of *x* = 15 appears likely for *Dyschoriste*, as noted by Daniel (2000a). The only other counts reported for the genus are *n* = 14 for *D. madurensis* (Burm.f.) Kuntze (Narayanan 1951; as *D. littoralis* (L.f.) Nees) and *n* = 28 for *D. vagans* (Wight) Kuntze (Kaur 1969), both Asian species. If those latter counts and are accurate, then another possible basic number in the genus is *x* = 14, and dysploidy is potentially also involved in the evolution of some species.

Based on counts to date, apparent dysploidy and polyploidy would appear to be evident among genera related to *Dyschoriste*. The genus pertains to Ruelliaeae: Petalidiinae (Tripp et al. 2013) where its relatives consist of five other genera related as follows: (*Ruelliosis + Phaulopsis*) + ((*Petalidium + Duosperma*) + (*Dyschoriste + Strobilanthes*)). Chromosome numbers have been reported for two other genera of the subtribe. A count of *n* = 16 has been reported several times for *Petalidium barlerioides* Nees (summarized in Tripp et al. 2013), and counts for 11 species of *Phaulopsis* reveal *n* = 16 (or ca. 16) in nine of them (Manktelow 1996). Daniel and Chuang (1998) suggested a basic number of *x* = 16 for the latter genus, in which polyploidy (i.e., *n* = ca. 32) has been reported for three species (Manktelow 1996), and possible dysploidy (i.e., *n* = 17) has been reported for two species that have otherwise been counted as *n* = 16 (Daniel & Chuang 1998).

**Graptophyllum Nees.**— *Graptophyllum* consists of about 15 species that occur mostly in the southwestern Pacific region. All previous chromosome counts for the genus are for the widely cultivated *G. pictum* (L.) Griff, often known as caricature plant. Counts of wild-collected plants in Papua New Guinea (*n* = 20, 21; Daniel 2000b), which lack the characteristic colored markings on the leaves, are different from those reported for cultivated plants with the foliar color patterns (*n* = 18, 30; see Daniel 2000b). Our count of *n* = 31 or 32 is similar to most of the other counts for cultivated plants of this species. Daniel (2000b) discussed possible native occurrences of *G. pictum*, the diversity of chromosome numbers known for it, and a possible basic number of *x* = 10.
Based on morphological characters, *Graptophyllum* would appear to pertain to the “*Pseuderanthemum* lineage” (sensu McDade et al. 2000) of Justicieae. A meiotic complement of 21 is widespread among a clade of morphologically similar genera (i.e., *Chileranthemum* Oerst., *Odontonema* Nees, *Oplonia* Raf., *Pseuderanthemum* Radlk. ex Lindau, *Ruspolia* Lindau, and *Ruttya* Harv.) of that lineage (McDade et al. 2000; Daniel 2000b; Daniel et al. 1990, 2000), here referred to as *Odontonemiae sensu stricto* (see below under *Odontonema* and *Pseuderanthemum*). It is noteworthy that this number is also known among plants of *G. pictum* Additional counts from this species, and especially from other species of *Graptophyllum*, will be necessary to formulate hypotheses about the evolution of chromosome numbers in that genus. A better understanding of the relationship between cultivated plants and their putative wild relatives would also be useful.

**Justicia L.**— Daniel (2000a) discussed chromosome numbers, as then known, in this rich (ca. 700 species) and widely distributed genus. Kiel et al. (2017, 2018) provided a detailed phylogenetic framework for *Justicia* and its relatives and discussed chromosome numbers in lineages treated therein. Our approximate count of $n = ca. 14$ for a wild-collected plant of *J. fulvicoma* Schltdl. & Cham., a species endemic to Mexico, generally agrees with the two previous counts of $n = 14$ for this species, one cultivated (e.g., Daniel and Chuang 1998) and the other wild-collected (Daniel et al. 1990). This same number is common (but not exclusive) among the other sampled members of the “Brandegeean clade” to which *J. fulvicoma* pertains (Kiel et al. 2018). Our count of $n = 14$ for the Brazilian *J. scheidweileri* V.A.W. Graham (Fig. 1G) is the first count for the species, which is often referred to as *Porphyrocoma pohliana* (Nees) Lindau in older literature, and was not included in the sampling by Kiel et al. (2017, 2018). A haploid complement of 14 is also the most common chromosome number reported for the more than 100 species of the genus studied to date (cf. Daniel 2000 for a frequency histogram of chromosome numbers reported for the genus). Based on the diversity of chromosome numbers reported for this large and nonmonophyletic, as currently treated, genus (i.e., $n = 7, 9–18, 20, 22–31, 34$; Daniel 2000a, 2006; Daniel et al. 2000), it is likely that both polyploidy and dysploidy have played roles in the evolution of these taxa, and that a knowledge of chromosomal data will be useful in unraveling the taxonomy of justicioids. An ancestral basic number of $x = 7$ has been proposed for *Justicia* (e.g., Piovano and Bernardello 1991; Daniel 2000a).

**Megaskepasma Lindau.**— *Megaskepasma* is a unispecific genus of Justicieae: Justiciinae that is presumably native to northern South America, but known primarily only from cultivation. Our approximate count of $n = ca. 26$ for *M. erythrochlamys* Lindau is the first one for the genus. Based on molecular data, Kiel et al. (2017) showed that *Megaskepasma* is resolved in the “South American *Poikilacanthus* clade” of the New World “justicioid lineage,” sister to the other sampled members of that clade. The only previous count for *Poikilacanthus* Lindau (i.e., for *P. macranthus* Lindau in the “Brandegeean clade,” which also consists of several North and Central American species of that genus and *Justicia* is $n = 14$ (Daniel 2000a), which number agrees with counts for at least five other members of its clade (Kiel et al. 2017). The only previous count for another member of the South American *Poikilacanthus* clade is $n = 28$ for *J. tweediana* (Nees) Griseb. (Piovano and Bernardello 1991). Our count, undoubtedly a polyploid (and possibly also a dysploid), would appear to be more in accordance with that of a member of the clade in which it has been resolved based on molecular data, than with species in the Brandegeean clade. One might hypothesize that other members of the South American *Poikilacanthus* clade will have similarly high chromosome numbers.

**Odontonema Nees.**— *Odontonema* consists of 29 species restricted to tropical and subtropical regions of the New World. Although Sarkar et al. (1980) reported $n = 17$ for *O. bracteolatum* (Jacq.) Kuntze (as *Thrysacanthus bracteotus* Nees), chromosome counts of $n = 21$ have been
reported for five other species of the genus (Takizawa 1957, as Thrysacanthus rutilans; Daniel 2000; Daniel et al. 1990). This latter number is also common to relatives of Odontonema in Justicieae: Odontoneminae sens. str. (e.g., Chileranthemum, Oplonia and Pseuderanthemum, among genera from the New World; see above under Graftophyllum). Indeed, De (1966) noted both common chromosome numbers and karyotypic affinities between species of Pseuderanthemum and Odontonema. Here, we report approximate counts for O. callistachyum (Schltdl. & Cham.) Kuntze (Mexico and northern Central America) of \( n = \text{ca. 63} \) and \( n = \text{ca. 42–50} \) and for O. tubaeforme (Bertol.) Kuntze (Mexico and Central America) of \( n = \text{ca. 20–30} \). There are no previous reports of a chromosome number for O. callistachyum; however, there is at least one previous report of \( n = 21 \) for O. tubaeforme (Daniel et al. 1990). Although both species are commonly cultivated, our study plants were wild-collected.

Given the likely basic number of \( x = 21 \) for Odontonema, and based on these approximate counts, the plants sampled for O. callistachyum would appear to be polyploids. Difficulties in obtaining an accurate count for these plants resulted from clumping of chromosomes, darkly staining cytoplasm, and/or meiotic irregularities (e.g., univalents, bivalents, and trivalents at metaphase I and anaphase I; lagging chromosomes). Similar meiotic irregularities are sometimes associated with hybrids, triploids, and/or sterility (e.g., Long 1966). Indeed, the approximate number for Daniel & Bartholomew 5013 is suggestive of triploidy. The very low percentage of non-staining pollen for both collections of O. callistachyum (Daniel 5368: number of grains = 377, 1% not staining; Daniel & Bartholomew 5013: number of grains = 97, 3% not staining) is similar to that for the sample of O. tubaeforme for which Daniel et al. (1990) reported \( n = 21 \) (Daniel & Bartholomew 4991: number of grains 205, 3% not staining). Thus, based on pollen stainability, the two collections of O. callistachyum with apparent meiotic irregularities would not appear to be sterile, and thus probably neither triploids nor interspecific hybrids.

Peristrophe Nees.—Peristrophe consists of about 45 species that occur in Africa, Madagascar, Asia, Malesia, and possibly Australia (cf. Barker 1996). The genus pertains to Justicieae: Diclipterinae. Some evidence suggests that the genus could be treated as conspecific with Dicliptera Juss. (see discussion in Kiel et al. 2017), and phylogenetic analyses based on molecular data reveal that the genus is not monophyletic as currently circumscribed (Kiel et al. 2017). Our count of \( n = 30 \) for P. speciosa (Roxb.) Nees (Fig. 2D), a species of the Indian Subcontinent (Bhutan, India, Nepal), agrees with the previous count for this species by Sareen and Sanjogta (1976). A report of \( n = 15 \) for P. speciosa (Vasudevan 1976) suggests euploidy (presumably diploid and tetraploid occurrences) in this species. Elsewhere in the genus, \( n = 15 \) has been reported for P. paniculata (Forssk.) Brummitt (see summary of at least eight counts, all reported as P. bicalyculata (Retz.) Nees, in Daniel et al. 2000). Other counts in the genus are \( n = 10 \) (Narayanan 1951 for P. paniculata, as P. bicalyculata), \( n = 24 \) (Ge et al. 1989 for P. japonica (Thunb.) Brenek.), and \( n = 21 \) (Takizawa 1957 for P. hyssopifolia (Burm.f.) Merr., as P. salicifolia Hassk.). It is noteworthy that counts of \( n = 15 \) are known for species of Peristrophe in each of the two clades of Diclipterinae (Kiel et al. 2017) that contain species of that genus.

The closest relatives of species of Peristrophe in Diclipterinae are Dicliptera, Hypoestes Sol. ex R. Br., and Rhinacanthus Nees. All of these genera share a common chromosome number of \( n = 15 \), which is likely the ancestral basic number of the monophyletic “core Diclipterinae” lineage noted by Kiel et al. (2017). Within “core Diclipterinae” polyploidy (e.g., \( n = 30 \)) is also known for Dicliptera, Hypoestes, and Peristrophe. Polyploidy is not known for Rhinacanthus (Daniel and Chuang 1998; Daniel et al. 2000), and no chromosome numbers have been reported for the Australian genus Xerothamnella C.T. White, a species of which is nested in a clade of Peristrophe (Kiel et al. 2017).
**Pseuderanthemum** Radlk.—*Pseuderanthemum* consists of about 65 species that occur in tropical regions worldwide. Our count of \( n = 21 \) for *P. graciliflorum* (Nees) Ridl. (Fig. 2C) is the first for this native of southeastern Asia. The species was treated as conspecific with *P. crenulatum* Wall. ex Lindl. by Hu et al. (2011), but the taxonomy of Asian/Malesian species of the genus remains to be fully resolved. Plants from which the chromosome count was made differ from the description of *P. crenulatum* in Hu et al. (2011) by their shorter bracts (2–4 vs. ca. 7 mm long).

At least 10 counts of \( n = 21 \) have been made previously for 7 species of *Pseuderanthemum* from North America, eastern Africa, India, and islands of the southern Pacific Ocean (De 1966; Kaur 1966; Govindarajan and Subramanian 1985; Daniel 2000a; Daniel and Chuang 1989, 1993, 1998; Daniel et al. 1990, 2000). Thus, a common number would appear to occur from throughout most of the range of the genus; counts of species in South America remain unknown. Although \( n = 30 \) was reported for *P. laxiflorum* Hubb. ex L.H. Bailey by Kaur (1969), \( n = 21 \) appears to be widespread both in the genus and among species in related genera of Justicieae: Odontonemiae *sensu stricto* (see above under *Graptophyllum* and *Odontonema*). This number may be postulated to be the ancestral basic number for both *Pseuderanthemum* and Odontonemiae *sensu stricto*.

**Ruellia** L.—*Ruellia* (Ruelliaceae: Ruelliinae) consists of about 350 species worldwide, with most of them occurring in the Western Hemisphere. The chromosome number \( n = 17 \) is common to at least 43 species occurring throughout its range in the New world (i.e., North America, Central America, South America, and the West Indies). Our counts of \( n = 17 \) (or ca. 17) for four Neotropical species confirm this number for them. Chromosomes of *R. costaricensis* (Oerst.) Tripp & McDade (Fig. 2A), a species of Nicaragua, Costa Rica, and Panama, were previously counted by Daniel (2000a, as *Blechum costaricense* Oerst.) for this rarely cultivated species. Our count for *R. dipteracanthus* (Nees) Hemsl. (Fig. 1F), presumably native to Mexico, agrees with previous counts by Grant (1955, as *R. squarrosa* (Fenzl) Schaffnit, and as “R. fluviatilis Leonard,” nom. ined., voucher at US seen). The counts for two Brazilian species, *R. elegans* Poir. (Fig. 1D) and *R. makoyana* Closon confirm previous counts for them by De (1966, as *R. formosa* Andr.) and by Grant (1955), respectively. The taxonomic relationships of *R. makoyana* to its morphologically similar congeners *R. devosiana* E. Morren (also \( n = 17 \); e.g., Daniel and Chuang 1998) and *R. portellae* Hook. f., all attributed to Brazil, are worthy of additional study. The only other chromosome numbers reported for species of *Ruellia* native in the New World (discounting two counts of \( n = 18 \) by Sugiuara (1939) because no vouchers were cited, identities of the species are questionable because no authors of names were given and one of the names applies to multiple species, and the counts reported differ from all subsequent reports for those species) are \( n = 16 \) for *R. tuberosa* L. (the majority of counts for this species is \( n = 17 \), see summaries of counts in Daniel 2000b) and \( n = 24 \) for Brazilian *R. macrantha* (Nees) Mart. ex B.D. Jacks. (Daniel & Chuang 1998).

In the Old World, there is a single report of \( n = 17 \) for *R. prostrata* Poir. (Sarkar et al. 1980); however, other numbers have also been reported for this species (e.g., \( n = 16 \), Subramanian and Govindarajan 1980; \( n = 24 \), Daniel and Chuang 1998), and \( n = 22 \) has been reported for it several times (e.g., De 1966; Kaur 1966; Govindarajan and Subramanian 1983; Saggi and Bir 1983). All of the counts for this African and Asian species apparently pertain to plants from India. Other counts for Paleotropical species of *Ruellia* consist of \( n = 16 \) for African *R. cordata* Thunb. (Rao and Mwasumbi 1981) and for Asian *R. patula* Jacq. (e.g., Baquar et al. 1966; Rao and Mwasumbi 1981; Subramanian and Govindarajan 1980; Govindarajan and Subramanian 1983) and \( n = 12 \) for Asian/Malesian *R. repens* L. (Daniel 2000b).

Based on the small sampling of species in the Old World, the diversity of chromosome numbers there appears to be greater than that for taxa in the New World. Tripp (2007) indicated that
taxa in the New World appear to be monophyletic and derived from African stock. Radiation from a single introduction in the New world might explain the widespread occurrence of \( n = 17 \) among diverse taxa there. Numbers common to both Neotropical and Paleotropical species are \( n = 16, 17, \) and 24. At least the latter suggests potential polyploidy in the genus. Meiotic complements of \( n = 16 \) are common elsewhere among ruellieae (see discussions herein for *Brillantaisia*, *Dyschoriste*, and *Strobilanthes*). Based on numbers reported to date, \( x = 12 \) or 16 would appear to be potential basic numbers in *Ruellia*, from which numbers of \( n = 17 \) and 24 may have arisen via dysploidy and polyploidy. If counts of both \( n = 16 \) and 17 for *R. tuberosa* are accurate, then dysploidy likely also occurs in some species. Although not currently known for any species of the genus, an ancestral basic number of \( x = 8 \) for either *Ruellia* (or Ruellieae) might account for lineages with \( n = 16 \) and 24. Given a potential ancestral basic number of \( x = 7 \) for the family (e.g., Piovano and Bernardello 1991; Daniel 2000a), such an hypothesis has some appeal. No chromosome numbers have been reported for any of the other genera of Ruellieae (i.e., *Acanthopale* C.B. Clarke, *Dischistocalyx* T. Anderson ex Benth., and *Sanatanocrater* Schweinf.; Tripp et al. 2013). Counts for these genera and additional counts for species of *Ruellia* in the Old World are needed to better formulate a potential ancestral basic number for and to understand patterns of evolution and migration in the genus. Counts are especially desired for species native to Madagascar and Australia, from which regions no chromosome numbers have been reported for any Ruellieae.

**Sanchezia Ruiz & Pav.**— This genus of about 55 species is native to tropical America. Our approximate count of \( n = \text{ca.} 36–40 \) for *S. parvibracteata* Sprague & Hutch., native to tropical South America and possibly southern Central America, is similar to the only previous count for this species, \( n = 40 \) (Narayanan 1951). The only other species of *Sanchezia* to have been counted is *S. oblonga* Ruiz & Pav., a species native to Bolivia, Ecuador and Peru, with counts of \( n = 68 \) (Singh 1951; Kaur 1970; both as *S. nobilis* Hook.f.) and \( n = \text{ca.} 66 \) (Grant 1955, as *S. nobilis*)—the highest haploid numbers so far reported for the family (Daniel 2000a; Tripp et al. 2013).

*Sanchezia* pertains to and is the largest genus in Ruellieae: Trichantherinae. Based on Tripp et al. (2013) the six genera of this subtribe are generally related as follows: *Louteridium* + (*Trichosanchezia* + (*Suessenguthia* + *Sanchezia*)) + (*Trichanthera* + *Bravaisia*). No counts have been published for any other genera in the subtribe. However, several approximate counts (Daniel unpublished) for *Bravaisia* and *Louteridium* reveal relatively high numbers for these genera and further suggest that polyploidy and probably also dysploidy were involved in the evolution of both the subtribe and its constituent genera (Daniel 2000a).

**Strobilanthes Blume.**— The Asian genus *Strobilanthes* Blume consists of about 400 species. Our count of \( n = 11 \) for *S. hamiltoniana* (Steud.) Bosser & Heine (= *Goldfussia colorata* Nees; Fig. 2B, E), native to the Himalayan region of southern Asia, is the first count for this species. At least two other species of the genus (in the broad sense in which it is currently recognized, e.g., Hu et al. 2011; and also including *Clarkeasia* and *Stenosiphonium* as per discussion in Tripp et al. 2011; and taking into account synonymies based on Venu 2006 and Karthikeyan et al. 2009) share this same number: *S. bracteata* (Nees) J.r.I. Wood (e.g., Vasudevan 1976, as *S. quadrangularis* Clarke) and *S. discolor* (Nees) T. Anderson (e.g., Pandey and Pal 1980).

An array of chromosome numbers \( (n = 8–16, 20, 21, 28, \) and 30) has been reported for at least 38 species in *Strobilanthes*, with \( n = 16 \) for 18 species being the most commonly reported number (Daniel and Chuang 1998). The genus pertains to Ruellieae: Strobilanthinae where all its subtribal relatives (e.g., *Goldfussia* Nees, *Hemigraphis* Nees) are probably best included within an expanded concept of *Strobilanthes* to achieve generic monophyly (e.g., Tripp et al. 2013). An ancestral basic number of \( x = 7, 8, \) or 10 seems likely for the genus, with both polyploidy and dysploidy accompanying evolution of taxa therein. Indeed, based on numbers reported for *S. pavala* J.R.I.
Wood (= *Hemigraphis latebrosa* (Heyne ex Roth) Nees; i.e., *n* = 12–14, 28; e.g., Kaur 1965, as *H. rupestris* Heyne ex T. Anderson; Vasudevan 1976; Saggoo and Bir 1982; Bala and Gupta 2011) both euploidy and dysploidy appear to be likely within that species.

**Thunbergia Retz.**— *Thunbergia* consists of about 150 species that are native to tropical (and subtropical) regions of the Old World. Our approximate counts for *T. erecta* (Benth.) T. Anderson (*n* = ca. 30), native to western tropical Africa and for the white-flowered form of *T. grandiflora* Roxb. (*n* = ca. 28), native to southern Asia, generally agree with at least some prior counts for these species. Previously, *n* = 28 has been reported for *T. grandiflora* at least six times and *n* = 14 (or ca. 14) has been reported twice (Daniel 2000b). In compiling previous counts for *T. erecta* (i.e., *n* = 8, 14, 26, ca. 28, 28, 30, 31, and 32), Daniel and Chuang (1998) noted their own difficulties in obtaining definitive counts for this species. They concluded that if previous counts for it are accurate, a diversity of chromosome numbers and ploidal levels are characteristic of the species. Our approximate count of *n* = 32–34 for the Indian endemic *T. mysorensis* (Wight) T. Anderson is the first for this species, and would appear to represent a ploidal level similar to the majority of counts for both *T. erecta* and *T. grandiflora*.

Chromosome numbers are known for 10 species of *Thunbergia*. The lowest numbers reported to date are *n* = 8 (e.g., Govindarajan and Subramanian 1983 for *T. erecta*), *n* = 9 (at least 13 counts: e.g., Daniel and Chuang 1989 for *T. alata* Bojer ex Sims, e.g., Grant 1955 for *T. reticulata* Hochst. ex Nees), and *n* = 10 (e.g., Sharma 1970 for *T. coccinea* Wall.). Multiples of *n* = 8 and *n* = 10 are known among species of *Thunbergia*, and these numbers may represent basic numbers in the genus. Daniel and Chuang (1998) proposed the former as a likely basic number. Unfortunately, chromosome numbers remain unknown for the two most likely generic relatives in subfamily Thunbergioideae, *Pseudocalyx* Radlk. and *Meyenia* Nees. From the diversity of numbers reported for the 10 species of *Thunbergia* studied to date, and considering the variation apparent within some species, it would appear that whatever the ancestral basic number is for this large genus, knowledge of chromosome numbers could be informative in phylogenetic studies of both *Thunbergia* and its relatives.

**Whitfieldia Hook.**— *Whitfieldia* consists of 12 species restricted in distribution to tropical Africa. Our approximate count of *n* = ca. 21 for *W. elongata* (P. Beauv.) De Wild. & T. Durand, a widespread species in tropical Africa, is the first for a species in the genus. Chromosomes of *Whitfieldia* are unusual among those we’ve observed among Acanthaceae in that they are heterochromatic. Most or all of the bivalents exhibit both darkly and lightly stained areas. Depending on interpretation of the preparations, cells showed 20, 21, or 22 bivalents at metaphase I of meiosis. Manktelow et al. (2001) treated the genus in tribe whitfieldieae along with two other genera that yielded the following phylogenetic relationship: *Lankesteria* + (*Chlamydacanthus* + *Whitfieldia*). These genera were shown to form a well-supported monophyletic group sister to Barlerieae. McDade et al. (2008) confirmed and refined composition and relationships both of and within the tribe; they added three Malagasy genera to Whitfieldieae, and the tribe was treated as sister to Barlerieae + Andrographidieae. Tripp et al. (2013) revealed *Zygoruellia* Baill. to pertain to Whitfieldieae, as well. No chromosome number has been reported previously for *Whitfieldia*, and the only number reported to date in the tribe is an older count of *n* = 25 for *Lankesteria elegans* T. Anders. (Mangenot and Mangenot 1962). Given the dearth of chromosome numbers for this tribe of seven genera and 31 species (Daniel unpublished data), it seems premature to postulate a basic number for it.

---

ACKNOWLEDGMENTS

I thank Fei-Mei Chuang and the late T.I. Chuang for their invaluable assistance in counting chromosomes of Acanthaceae for many years. The San Francisco Conservatory of Flowers grew many of these plants in their public collection and kindly provided greenhouse space for me to grow several others. I am grateful to the Waimea Arboretum and Botanical Garden, Missouri Botanical Garden, Mildred E. Mathias Botanical Garden, and Jardín Botánico Dr. Faustino Miranda in Tuxtla Gutiérrez (Chiapas) for allowing me to collect materials at their beautiful gardens; and to Frank Almeda for collecting buds of *Graptophyllum* in Panama. Dennis Breedlove, Bruce Bartholomew, and Marc Baker assisted with field work in Mexico that resulted in some materials for these counts.

LITERATURE CITED


SUGIURA, T. 1939. Studies on the chromosome numbers in higher plants III. *Cytologia* 10:205–212.


Redescription of Two Indian Stigmina (Hymenoptera: Crabronidae)

Wojciech J. Pulawski 1 and Ramasamy Gandhi Gracy 2

1 Department of Entomology, California Academy of Sciences, 55 Music Concource Drive, Golden Gate Park, California 94118, USA. E-mail: wpulawski@calacademy.org.

2 Division of Molecular Entomology, National Bureau of Agricultural Insect Resources, H.A. Farm Post, Post Bag No. 2491, Bellary Road, Bangalore-24, India. E-mail: Gandhi_Gracy@yahoo.co.in.

Redescription of Two Indian Stigmina (Hymenoptera: Crabronidae)

Wojciech J. Pulawski 1 and Ramasamy Gandhi Gracy 2

1 Department of Entomology, California Academy of Sciences, 55 Music Concource Drive, Golden Gate Park, California 94118, USA. E-mail: wpulawski@calacademy.org.

2 Division of Molecular Entomology, National Bureau of Agricultural Insect Resources, H.A. Farm Post, Post Bag No. 2491, Bellary Road, Bangalore-24, India. E-mail: Gandhi_Gracy@yahoo.co.in.

Two Indian species of Stigmina: Stigmus cuculus Dudgeon and Carinostigmus aterrimus (R. Turner), not studied since their descriptions a century ago, are redescribed, and their diagnostic characters are provided. The hitherto unknown male of Carinostigmus aterrimus is described, with the first image of genitalia for the whole genus. The current generic assignment of the two species (Bohart and Menke, 1976) is confirmed.

This paper is a result of our efforts at understanding and identifying Oriental Carinostigmus. The first step toward that goal was a study of two species described in Stigmus: S. cuculus Dudgeon, 1903 and S. aterrimus R. Turner, 1917 (the latter being later transferred to Carinostigmus). They have never been studied since their descriptions a century ago, and the original description of the first of these two species is highly insufficient. The type material of these two species, preserved in The Natural History Museum, London, United Kingdom, was kindly sent for examination by Mr. David Notton. Their redescription is given below.

The following are the institutional abbreviations used in the text:

BMNH: The Natural History Museum (formerly British Museum Natural History), London, United Kingdom.

CAS: California Academy of Sciences, San Francisco, California, USA.

NBAIR: Division of Molecular Entomology, National Bureau of Agricultural Insect Resources, Bangalore, India.

Stigmus cuculus Dudgeon


This species was described in one brief sentence: “Differs from S. congruus (Walk.) in being less than half the size, in the whole of the antennae being testaceous, clypeus subtriangular and slightly produced; tubercles not white.” The reference to S. congruus, now placed in Carinostigmus, suggests that S. cuculus is also a Carinostigmus. In fact, the species is a Stigmus, as indicated by the hindwing submedian cell not reduced and the crossvein cu-a positioned next to the origin of media (Finnamore, 1995). In addition, the midfrontal carina and the paraorbital groove are lacking, and the gastral petiole is longitudinally carinate. Also, the interantennal tubercle is

333
absent, the mesopleuron is mostly unsculptured, shiny (as opposed to the coarsely sculptured mesopleuron of *Aykhustigmus*), and the hindwing vein cu-a originates at some distance from apex of submedial cell.

As far as we know, no specimens of this species have been collected since its description.

**RECOGNITION.**— Of the 24 described species of *Stigmus* other than *S. cuculus*, we could examine 12, and we have also seen a number of undescribed species. It appears that *S. cuculus* has a unique combination of the nonmarginate free margin of the clypeal lobe and of the paraorbital sulcus on the frons, whereas the black pronotal lobe is a subsidiary recognition feature. Also, the area between the scrobal sulcus and the hypersternaulus is aciculate, almost unsculptured. An undescribed species from Thailand is similar, but differs in having the mesopleuron conspicuously ridged and rugose above the hypersternaulus, and the anterolateral corner of the clypeal lobe more prominent than in *S. cuculus*.

**REDESCRIPTION.**— ♀. Inner eye margins slightly converging below (Fig. 1). Head subquadrate in dorsal view, lateral margins relatively slightly converging behind eyes (Fig. 3). Gena in profile narrower than eye (Fig. 4). Middle clypeal lobe truncate apically (Fig. 2), not subtriangular as stated in original description. Free margin of labrum truncate. Frons aciculate up to the level of scape length, unsculptured above, with smooth sulcus adjacent to inner eye orbit and extending to upper level of aciculate area; upper frons without longitudinal impression (that is present in *S. pendulus* Panzer). Ocellocular distance 2.0 × as long as interocellar distance. Prothorax side striate. Area between scrobal sulcus and hypersternaulus aciculate, almost unsculptured; area above scrobal sulcus dull, minutely, irregularly ridged longitudinally. Scutum aciculate, with scattered punctures (Fig. 5). Propodeum markedly reticulate (Fig. 6). Hindwing median vein emerging from apex of anal cell (it emerges a short distance from apex of anal cell in *S. convergens* Tsuneki, *S. japonicus* Tsuneki, and *S. quadriceps* Tsuneki, see Budrys, 1987). Gastral petiole with a pair of longitudinal carinae, finely ridged longitudinally on each side of carinae; petiole length in dorsal view equal to hindtarsomeres I and II combined.

Head, thorax, propodeum, and gaster all black (including pronotal lobe), but mandible yellow (except apically) and antenna largely testaceous. Foretrochanter testaceous, mid- and hindtrochanter testaceous anteriorly, black posteriorly; femora black; tibiae and tarsi testaceous.

♂.— Unknown.

**RECORDS** (Fig. 7).— Known only from the type locality.

---

**Figures 1–2. Stigmus cuculus** Dudgeon, syntype female. (1) Head in frontal view; (2) Clypeus and adjacent frons.
Carinostigmus aterrimus (R. Turner)


Tsuneki (1954) included this species in his revision of the Eurasian *Stigmus*, but had seen no specimens. Based on the original description, however, he correctly recognized that the species was a *Carinostigmus* (treated as a subgenus of *Stigmus* at that time). He also correctly recognized the diagnostic characters.

**RECOGNITION.**— *Carinostigmus aterrimus* differs from its congeners in having the mandible black at least basally (brownish apically to mostly brown) rather than yellow, and the trochanters black (at least mid- and hindtrochanters) rather than testaceous.

**REDESCRIPTION.**— Inner eye margins slightly converging below in female (Fig. 8), more so in male (Fig. 15). Frons microareolate, outside of scapal basin also minutely ridged. Paraorbital groove crenulate, moderately broad along anterior head surface. Horizontal portion of frons and postocellar area almost unsculptured, with only widely spaced microscopic punctures. Midfrontal carina well defined but markedly thinner just before midocellus, below midlength forming narrow, erect projection. Occipital carina narrow, not crenulate in female, crenulate ventrally in male.
Figure 7. Map of Indian subcontinent with collecting localities of *Stigmus cuculus* Dudgeon (square) and *Carinostigmas aterrimus* (R. Turner) (circles).

Underside of head lineate laterally but not mesally (Fig. 18). Free margin of clypeal lobe shallowly emarginate, slightly more so in male (Fig. 15) than in female (Figs 9, 10), free margin laterally of lobe gently incurved, not forming projection (Figs. 9, 10, 15). Transverse carina of pronotal collar well defined, spicate laterally, not emarginate mesally in female, slightly emarginate in male (emargination smaller than in *C. costatus* Krombein). Scutum with scattered punctures slightly larger and denser than those on head, not foveate along flange (Fig. 12); notaulus impressed, crenulate, shorter than distance between notauli; parapsidal line inconspicuous in female, conspicuous in male; posterior part of scutum conspicuously foveolate adjacent to hind-
margin (middle pair of foveae the largest). Scutellum with deeply impressed, crenulate groove along foremargin, with a few scattered punctures on disk. Postscutellum unsculptured mesally, rugulose laterally. Omalus well defined, broader than hypersternaulus, divided into two sulci that are separated by vertical carina (not divided in *C. filippovi* Gussakovskij); crenulation along omalus posterior margin varying: markedly less conspicuous than that of hypersternaulus in holotype, but equal in size or larger than hypersternaulus in other specimens examined; omalus joining scrobal sulcus; scrobal sulcus in holotype about one midocellar diameter wide next to pronotal lobe, but soon narrowing and forming narrow sulcus posteriorly, longer than in holotype in one female from Yelahanka and in male; area between hypersternaulus and scrobal sulcus unsculptured.
or nearly so, markedly larger than greatest width of hypersternaulus (smaller in *C. costatus*); ridges along mesopleuron posterior margin (between hypersternaulus and midcoxa) fine, somewhat conspicuous in female from Kunchappanai, and well defined in male. Propodeal enclosure with median carina and oblique, somewhat irregular ridges emerging from it (Fig. 14), without unridged area apically; propodeal dorsum outside of enclosure obliquely ridged; propodeal side longitudinally ridged; posterior surface coarsely rugose ventrally, in holotype dorsally unsculptured on each side of median sulcus (unsculptured area attaining apex of enclosure), but all rugose in other specimens examined. Gastral petiole in dorsal view 6.0 × as long as wide at middle in female, 8.2 × in male.

Body black, shiny except for pale yellow pronotal lobe, with the following testaceous: scape ventrally in some specimens, labrum, palpi, articulation between trochanters and femora, foretrochanter in one female from Yelahanka and in male, also articulation between forefemur and foretibia in male, anterior surface of foretibia, posterior surfaces of mid- and hindtibia, and tarsi; mandible black except brownish apically, but brown except black basally in female from Kunchappanai, and black basally and apically and light brownish mesally in male.

♀.— Head moderately narrowed behind eyes in dorsal view (Fig. 11), its width next to occipital carina equal to 0.56 × its greatest width. Postocellar area elongate (Fig. 11). Labrum (invisible in holotype) pentagonal, its lateral margins diverging ventrally near base, converging and straight over most of their length, apex rounded (Fig. 10). Pygidial plate oval, microsculptured. Length 4.7-5.3 mm

♂.— Head markedly narrowed behind eyes in dorsal view (Fig. 17), its width next to occipital carina equal to 0.33-0.35 × its greatest width. Postocellar area markedly shorter than in female (Fig. 17). Labrum shallowly, broadly emarginate apically (Fig. 18). Three apical flagellomeres with placoids. Genitalia: Fig. 19. Length 5.6-5.9 mm.

**Records** (Fig. 7).— **India**: Karnataka: Attur: Yelahanka at 13°10′N 77°56′E (1 ♀, CAS; 1 ♀, 2 ♂, NBAIR:). Tamil Nadu: Nilgiri Hills: Coonoor at 11°3530′N 76°7956′E (1 ♀, BMNH, holotype of *Stigmus aterrimus* R. Turner) and Kunchappanai 15 km SE of Kotagiri at 11°22′N 76°56′E (1 ♀, CAS).

**Acknowledgments**

We sincerely thank Mr. David Nottton of The Natural History Museum, London, U.K., for sending the types used in this paper. Robert L. Zuparko read the manuscript and eliminated a number of errors.

**References**


TSUNEKI, K. 1954. The genus Stigmus Panzer of Europe and Asia, with description of eight new species (Hymenoptera, Sphecidae). Memoirs of the Faculty of Liberal Arts, Fukui University (Series II, Natural Science) 3:1–38.57.

Macrosiphum edrossi Essig, 1953 (Hemiptera, Aphididae):  
Second World Record, Redescription and Biological  
and Taxonomic Notes

Juan M. Nieto Nafría 1, 3 and Jaime Ortego 2

1 Departamento de Biodiversidad y Gestión ambiental, Universidad de León. 24071 León, Spain. E-mail: jmnien@unileon.es. ORCID ID: 0000-0001-6714-2415. 2 Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Mendoza, San Martín 3853, 5507 Luján de Cuyo, Mendoza, Argentina. E-mail: ortegojaime@yahoo.com.ar. ORCID ID: 0000-0001-9738-7085. 3 Corresponding author.

In memoriam of Prof. Edward Oliver Essig (1884-1964) and  
Dr. Edward Shearman Ross (1916-2016), renowned Californian entomologists.

Macrosiphum edrossi Essig, 1953 (Hemiptera, Aphididae) is recorded for first time  
since description also from Peru. Apterous and alate viviparous females are  
redescribed from paratypes and other recently collected specimens. The identity of  
the plant that hosts the species is discussed as well as the taxonomic assignment of  
the species. An updated description of the species is provided herein.

KEYWORDS: aphids, Aphididae, Macrosiphum, Peru, plant host

Se cita Macrosiphum edrossi Essig (Hemiptera Aphididae) por primera vez desde su  
descripción, también del Perú. Se redesciben las hembras vivíparas ápteras y aladas  
a partir de paratipos y de otros especímenes recientemente recogidos. Se discute la  
identidad de la planta hospedadora de la especie. Se comenta la adscripción  
taxonómica de la especie.

Macrosiphum edrossi Essig, 1953 (Hemiptera, Aphididae, Aphidinae, Macrosiphini) is one of  
the 55 species listed by Essig (1953) in his study of aphids collected in Southern and Western South  
America by Dr. A.E. Michelbacher, who, in company with Dr. E.S. Ross, and their respective  
wives, carried out “an intensive insect-collecting expedition in Chile, in particular, and less exten- 
sively also in Argentina, Bolivia and Peru […] [which] was a part of the activities of the Califor- 
nia Academy of Sciences which institution arranged for the ocean transportation and supplied a  
truck for travel on land” from December 1950 to April 1951 (Essig 1953:59).

In addition to M. edrossi, Essig (1953) included in the genus Macrosiphum Passerini, 1860,  
another five new species described by him and eight previously described. As of the date of this  
contribution, only three of the 14 species listed by Essig are currently classified in this genus:  
M. rosae (Linnaeus, 1758), M. solanifolii (Ashmead, 1882) — currently M. euphorbiae (Thomas,  
1878) — and M. edrossi Essig, 1953. The first two species are Euro-Asiatic in origin and are cur- 
rently cosmopolitan; M. edrossi is known only from the type-locality, and it is the only Macrosi- 
phum species that can be considered endemic to South America. Nieto Nafría et al. (2017) report  
that the type locality of M. edrossi, originally cited by Essig (1953) as «Rio Pampas», is, more  
precisely, Ayacucho, near Pampas River.
Macrosiphum edrossi was named in honor of Edward S. Ross, at that time Curator of Entomology at the California Academy of Sciences museum. The species was described from 28 apterous and 7 alate viviparous female specimens collected on a plant “what appears to be a nettle (ortiga) [in Spanish], Urtica sp.” (Essig 1953:119). On the labels of the aphid microscopic slides is handwritten “nettle ?”. The written description of M. edrossi is as brief as Essig’s aphid descriptions usually are and as was frequent at the time; the description is complemented by a group of drawings, which are very informative. The holotype and several paratypes are in the entomological collections of the California Academy of Sciences, Department of Entomology [CAS] in San Francisco; additional paratypes are in the Natural History Museum in London [NHM-L].

Macrosiphum edrossi has remained in Macrosiphum after the extensive taxonomic revisions implicitly made by Eastop and Hille Ris Lambers (1967) and Blackman and Eastop (2008 and 2017), although several features lead us to think that this taxonomic position may not the best option, i.e., because of the few reticulation in the apex of siphunculi.

One of the authors (J.O.) collected several aphids in Pisac (Peru) on Baccharis latifolia (Ruiz & Pav.) Pers., that have been identified by us as M. edrossi based upon the original description and comparison with the paratypes of the species.

A complete re-description of apterous viviparous females and thoughts about the taxonomic status, plant host, and distribution of the species are presented here.

Macrosiphum edrossi Essig, 1953


Material examined.—PERU, Ayacucho department, Ayacucho, near Pampas River, 8 March 1951, on “nettle ?”, A.E. Michelbacher leg., E.O. Essig det., 13 viviparous apterous females and 6 alate viviparous females (4 apt. and 3 al. in CAS collection and 9 apt. and 3 al. in NHM collection), paratypes. PERU, Cusco department, Pisac (13°26ʹS 71°50ʹW and 2,980 m a.s.l. aprox.), 25 May 2010, on Baccharis latifolia, J. Ortego leg., J.M. Nieto Nafría & J. Ortego det., 4 apterous viviparous females, Universidad de León collection.

Redescription.—From above mentioned specimens and original description by Essig (1953).

Apterous viviparous females (Figs. 1, 2A, 2B, 3, 4).—Color when alive pale green with brown antennae, legs and siphunculi. When mounted very light yellow, with head including clypeous and mandibular and maxillary lames, rostrum, legs, siphunculi, anal plate and cauda more or less pigmented (Fig. 1A). Body length, 2.325–3.275 mm (3.38–4.65 times siphunculus) including cauda and 2.025–2.950 mm (2.97–4.05 times siphunculus) without cauda. Head brownish yellow, and smooth, with 2+2+4 dorsal setae in addition to the other four placed on the edge of the frons (Fig. 1B); they are 22–35 µm and 0.5–0.9 times subarticular diameter of the antennal segment III [from here D], fine, pointed and very pale. Ventral setae similar in shape and pigmentation to dorsal ones and somewhat longer than them. Frontalateral tubercles tall, divergent, apically rounded and marking a frontal sinus, and frontomedial tubercle lower than those (Fig. 1B). Antennae 3.398–4.480 mm and 1.25–1.54 times body length with cauda (1.39–1.75 times without cauda). Antennal segments I and II smooth and colored like head (Fig. 1A), with setae similar in shape, length and lack of pigmentation to those of head. Antennal segment III, 0.73–0.92 mm, near smooth, very dark brown except a small basal portion (8.2–13.8% of its total length) that is pale like head (Fig. 2B); 2–9 secondary sensoria, small, more or less circular and aligned on the 2/3 of the dark part of segment at most. Segment IV, 0.53–0.81 mm, softly imbricated and dark brown; segment V, 0.43–0.65 mm, imbricated and brown to dark brown; both two without secondary
sensoria. Antennal segment VI imbricate and brown to dark brown (Fig. 2A); base of antennal segment VI, 0.16–0.20 mm; processus terminalis, 0.99–1.24 mm, 5.5–6.6 times base and 1.2–1.5 times antennal segment III. Setae on antennal segments III to VI also very pale, but lower (on segment III, 12–23 µm, 0.3–0.6 times D) than those on head and truncated or widened at apex. Rostrum extends back to slightly beyond hind coxae. Ultimate rostral segment, 0.14–0.16 mm, robust (2.2–3.1 times its basal width), 1.5–1.9 times base of antennal segment VI and 1.1–1.4 times second segment of hind tarsus, pigmented like penultimate one and darkened than proximal segments and head; with 10–17 accessory setae, pale, delicate, pointed and long, but shorter that primary apical ones. Thorax paler than head and devoid of marked cuticular ornamentation; spiracle sclerites rough and unpigmented, spiracular apertures circular or subcircular. Both dorsal and ventral setae similar in shape and size to those on anterior abdominal segments. Coxae, trochanters more or less pigmented like head, rest of legs progressively pigmented to brown apical portion of tibiae and tarsi (Fig. 3). Setae on legs pale, pointed and relatively robust; those dorsal on hind femora, 13–25 µm; those dorsal on the middle third of hind tibiae, 18–33 µm and 0.4–0.8 times width of segment at point of seta insertion. First segments of tarsi with three setae. Abdomen membranous but something rough; presiphuncular and postsiphuncular sclerites and transverse band on abdominal segment 8 small and very pale, only distinguishable by a tenuous cuticular ornamentation; intersegmental sclerites inconspicuous. Spiracular sclerites and apertures similar to those on thorax. Without marginal tubercles. Dorsal setae relatively thick (more than cephalic) but hardly noticeable by extreme pallor, with blunt or truncated apex; 2–3 marginal on each side of abdominal segments 2 to 4, 12–20 µm and 0.3–0.6 times D, similar to spinal ones. Ventral setae pointed, more delicate and much longer than dorsal ones. Abdominal segment 8 with 2–4 setae, thinner than other dorsoabdominal setae, 22–30 µm and 0.6–0.8 times D. Siphunculi (Fig. 4) brown, usually darker than head but not as dark as most part of antennae, 0.50–0.87 mm, 0.7–1.0 times antennal segment III, cylindrical over most of its length with a widened and paler proximal portion and a distal portion of diverging edges, relatively thin (5.5–10.0, 12.5–24.0 times as long as wide at the base and in the middle, and 0.6–1.1 times the width of hind tibiae at middle
length), progressively imbricated from its near smooth widened basal portion to apex, with 2–4 lines of small cells on distal 3.8–6.3% of their total length. Genital plate very pale and with setae as usual. Cauda (Fig. 4) lanceolate, pigmented than head and anal plate, 0.30–0.43 mm, 0.5–0.6 times siphunculus, 1.7–1.9 times its basal width, and with 6–8 long, curved, delicate and pointed setae.

**Alate viviparous females** (Fig. 2C).—When alive “yellowish or greenish […] with head, thorax and all appendages brown to black” from Essig (1953), appendages must be understood: antennae, legs and siphunculi. Prepared specimens very similar to apterous viviparous females, exclud-
ing the thoracic organization (sclerites and wings) and pigmentation (yellowish brown). Other appreciable differences as rapport of apterae are as follows; minimum and maximum limits of not mentioned metric and meristic characteristics are included within the range for each feature in apterae. Antennal segments I and II more pigmented. Antennal segment III, 0.72–0.83 mm; pale proximal portion 7.5–11.3% of total length, carrying 14–19 secondary sensoria extended on two third of the segment length (Fig. 2C). Processus terminalis of antennal segment VI, 1.18–1.33 mm, 6.0–7.1 times base and 1.4–1.7 times segment III; ultimate rostral segment, 0.15–0.17 mm. Femora more pigmented, in extension and intensity. Dorsal setae of middle third of hind tibia, 0.6–0.9 times the width of segment at point of insertion. Marginal sclerites on abdominal segments 2–4, conspicuous, spinuled, sometimes pigmented and carrying 4–5 setae 13–28 µm and 0.3–0.7 times D. Setae on abdominal segment 8, 27–40 µm and 0.7–1.7 times D. Siphunculus, 4.28–4.92 times and 3.93–4.50 times included in body length with cauda and without cauda respectively; reticulation provided of 4–5 lines and extended on 6.5–7.8% of total length of siphunculus. Cauda, 2.0–2.3 times its basal width.

BIOLOGY, PLANT HOST.—Two plant species have been mentioned as host plants for Macrosiphum edrosii: Urtica sp. (?) by Essig (1953) from Michelbacher’s collection data, and Baccharis latifolia (Ruiz and Pav.) Pers. (Asteraceae, Astereae) in this paper from Ortego’s collection data. Both plants have different aspects and in addition B. latifolia cannot be confused with a nettle because it lacks the characteristic stinging trichomes. It could be that the specimens collected by Michelbacher were vagrants, although there are many specimens to establish it with certainty, and it could also be that they were collected when beating plants of nettle among which there were twigs of B. latifolia that could have gone unnoted; we note that Michebacher collected the type specimens of Delfinoia peruviana (Essig, 1953) when beating onto a canvas in the same locality and date. Nevertheless, it is also possible that both plant taxa are hosting M. edrossi, because oligophagy or polyphagy are possible in aphids.

The life cycle of the species is unknown, but it would be holocyclic (with sexual generation and winter eggs) to be able to withstand the low winter temperatures of the areas where it has been found.

GEOGRAPHICAL DISTRIBUTION.—Macrosiphum edrossi is currently only known in Ayacucho and Pisac (Peru), which are separated one from another about 280 km in a straight line, but it is also very likely that its distribution is much more extensive, because Baccharis latifolia is known in Argentinean North-West, Bolivia, Peru, Ecuador, Colombia and Venezuela.

TAXONOMIC DISCUSSION.—Although most of the characters of viviparous females of Macrosiphum edrossi suggest it should be placed in the genus Macrosiphum, it must be noted that the small surface occupied by the siphuncular apical reticulation is a very peculiar character that generates doubts about this taxonomic assignment. An analysis of nucleic sequences would certainly help clarify its taxonomic status, but it will be necessary to wait to have material fixed in suitable conditions to be able to obtain them. Doubts could be solved if other presumably South American native species sufficiently similar to it were to be discovered.

ACKNOWLEDGMENTS

The authors wish to thank to Robert Zuparko and Brian L. Fisher (Department of Entomology of the California Academy of Sciences), and Paul A. Brown (Natural History Museum, London), for the loan of two and three slides respectively with paratypes of M. edrossi. Our gratitude also to Sara I. López Ciruelos (Microscopy Service, University of Leon) for taking microphotographs and editing figures, and to Alan E. Leviton (California Academy of Sciences, San Francisco), who gave us his opinion on an earlier short paragraphs of this manuscripts.
REFERENCES


William J. Poly

Aquatic Biodiversity Research Institute, 11205 Schroeder Road, Saint Marys, OH 45885, USA; Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA. E-mail: wpoly@calacademy.org

Two species of the leech genus *Macrobdella* (North American medicinal leeches), *M. decora* (Say, 1824) and *M. ditetra* Moore, 1953, have been reported from South Carolina. Collections made in 2008 revealed the presence of a third species, *Macrobdella sestertia* Whitman, 1886, in the state. The species had been collected rarely in the northeastern United States, with only seven specimens collected during the 20th century and the original type specimen(s) lost. The recent South Carolina collections add three locality records and nine specimens, and two other specimens that had been collected in 1984 and 2002 were found in museum collections, resulting in a total of five locations and eleven specimens. This report of *M. sestertia* in South Carolina is a significant southward extension of its distribution (approximately 1,360 km), which formerly included only Massachusetts, Maine, and New Hampshire, and is also the largest sample ever reported for the species. Life colors of *M. sestertia* are shown for the first time. Morphological variations were observed for copulatory gland pore number and for annuli arrangement. Evidence is presented for predation on fish eggs in New Hampshire by *M. sestertia* and *M. decora*. At one location on Sleepy Creek, *M. sestertia* harbored another leech, *Placobdella nuchalis* Sawyer and Shelley, 1976 (Glossiphoniidae), which is a new association. Three new county records of *M. ditetra* in South Carolina also are included.

KEYWORDS: Annelida, Hirudinea, leeches, South Carolina, morphological variation

Currently, there are four valid species of North American medicinal leeches recognized in the genus *Macrobdella*: *M. decora* (Say, 1824), *M. sestertia* Whitman, 1886, *M. ditetra* Moore, 1953, and *M. diplotertia* Meyer, 1975 (Say 1824; Whitman 1886; Moore 1953; Meyer 1975; Smith 1977). All of the species are sanguivorous (or presumed to be), feeding on vertebrates (mainly frogs) and at least *M. decora* and *M. diplotertia* are predators of embryos and juveniles of amphibians (Cory and Manion 1953; Cargo 1960; Schalk et al. 2002; Trauth and Neal 2004; Connior and Trauth 2010). Two species, *M. decora* and *M. sestertia*, are known or presumed to attack and feed on the blood of humans, and *M. decora* has been used in medical practice since the 1800s (Smith 1843, 1845). Sawyer (1973) discussed cases of leech attacks on swimmers in several South Carolina lakes and indicated that *M. decora* was the species involved in the attacks at Lake Jemiki (Oconee Co., SC) in the late 1960s and early 1970s. Smith (1977) documented leech attacks on swimmers at a lake in Massachusetts where *M. sestertia* was collected. The nervous systems of both *M. decora* and *M. sestertia* have been studied in relation to their swimming (Weeks 1982).

*Macrobdella decora* has a wide distribution in eastern and central North America from north-
ern Mexico to southern Canada (Klemm 1982); however, only a single locality has been reported in South Carolina (Sawyer and Pass 1972). *Macrobdella ditetra* occurs in coastal states from Virginia to Louisiana and inland to Arkansas (Moore 1953; Sawyer and Shelley 1976; Klemm 1982), and has been collected at seven locations on the coastal plain of South Carolina (Sawyer and Shelley 1976). *Macrobdella diplotertia* has been found in Missouri, Kansas, and Arkansas (Meyer 1975; Klemm et al. 1979; Turbeville and Briggler 2003). *Macrobdella sestertia* occurs in Massachusetts, Maine, and New Hampshire (Whitman 1886; Smith 1977; Smith and Hanlon 1997; Phillips et al. 2016), with reports from Louisiana (Klemm 1972; Davies 1991) being erroneous (Smith 1977). Phillips et al. (2016) reported a new state record for *M. sestertia* in New Hampshire, listing the collection site as “Suncoop Pond,” a misspelling of “Suncook Pond,” which is itself an unofficial, local name for Northwood Lake (the correct name that appears on maps; see Bailey 1938; Hoover 1938; Warfel and Fuller 1938). Seven species of leeches were reported from the middle to lower Savannah River (Patrick et al. 1967). Since the comprehensive review of leeches of the Carolinas by Sawyer and Shelley (1976), additional information on leeches in South Carolina has been published by Sawyer (1979), Klemm (1995), Moser et al. (2005), Light et al. (2005), Moser et al. (2011), and Phillips et al. (2016). In 2008, specimens of *M. sestertia* were collected from several Savannah River basin streams in South Carolina, which is a significant extension of the known range of this rarely-collected species. In addition, an association between *M. sestertia* and *Placobdella nuchalis* was observed for the first time.

**MATERIALS AND METHODS**

Leeches were collected by hand and with dipnets from streams in South Carolina in 2008 and 2011 (Poly 2011). Some leeches were brought from the field alive, and activity, swimming, and feeding were observed in captivity before preservation. Leeches were narcotized by slow addition of 70% ethanol to water in their containers, then were preserved in 70% ethanol. Photos were taken of some *M. sestertia* while alive in an aquarium and of two immediately after preservation. Others were fixed in 70% ethanol in the field without narcotization; however, these had been killed by summer heat and were relaxed prior to preservation. One *M. ditetra* was allowed to attach to several frogs to feed while in captivity. Additional leeches were borrowed from museum collections. Leech identifications were made using morphological characteristics given in original descriptions and subsequent works (Whitman 1886; Moore 1959; Sawyer and Shelley 1976; Klemm 1982; Davies 1991; Govedich et al. 2010). Annuli designations follow Sawyer (1986a). Leech specimens were deposited in the California Academy of Sciences, Invertebrate Zoology collection (CASIZ), San Francisco, California, USA, and the Charleston Museum (ChM), Charleston, South Carolina, USA. Comparative material was borrowed from ChM, the Museum of Comparative Zoology (MCZ), Harvard University, Cambridge, Massachusetts, USA and the North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA (NCSM; ChM specimens are now housed at NCSM) (see Appendix 1).

**RESULTS AND DISCUSSION**

A total of 10 specimens of *Macrobdella* spp. were collected in South Carolina from four locations in 2008 and 2011. Eight leeches collected in 2008 had the following characteristics that identify them as *Macrobdella sestertia*: 1) male and female gonopores separated by two and one-half annuli, lying on annulus 33 and between annuli 35 and 36, respectively, 2) a total of 24 copulatory gland pores arranged in four rows of six on annuli 42–44, 3) median longitudinal row of 20 pale orange spots along a diffuse mid-dorsal stripe with marginal rows of 20 quadrangular black blotches, and 4) body pigmentation olive green dorsally, orange to reddish-orange with scattered black
blotches ventrally (the number and position of the blotches were variable among specimens Figs. 1, 2). Total lengths of the eight leeches were 39.7, 47.8, 48.1, 53.7, 62.4, 69.1, 79.3, and 93.7 mm; one additional specimen (ninth specimen) from Turkey Creek was considered to be *M. sestertia*; however, it escaped after capture. The copulatory gland pores are inconspicuous and lying hidden between annuli in smaller leeches, becoming more exposed as the glands develop. The three largest leeches had noticeable gland development that appeared white, contrasting with the orange coloration on the ventral side of the body. All *M. sestertia* had dark pigment on the postero-ventral and ventro-lateral margins of the caudal sucker (= acetabulum) (Figs. 1, 2), with the pigment being more extensive in larger leeches. Later, an unidentified leech collected in 1984 was found in ChM and was identified as *M. sestertia* (ChM IO6, 69.3 mm TL); an additional leech collected in 2002 was found in NCSM (as *M. decora*) and was reidentified as *M. sestertia* (NCSM 29791). Both of these collections were from Turkey Creek in Edgefield Co. (Fig. 3, Appendix 1). One *M. sestertia* possessed unusual overlapping annuli (Fig. 4, ChM IO7, 47.8 mm TL), and this condition does not appear to have been reported for any species of *Macrobdella*. The type specimens of *M. sestertia* could not be located, and the only localities mentioned in the original description were on page 382 as “Found in the neighbourhood of Cambridge; geographical limits unknown.” and in the legend for Fig. 57 on page 414 as “obtained from Charles River, Watertown, Mass.” (Whitman 1886).

In addition to collections of *M. sestertia*, one specimen of *M. ditetra* (44.1 mm TL) was collected from Willow Creek, Florence Co., SC in 2011. This specimen has male and female gono-pores separated by two annuli and possesses a total of 8 copulatory gland pores arranged in two rows of four. Its pigmentation was gray/brown dorsally with one wide median dusky stripe, two narrow longitudinal stripes medially, two longitudinal rows of closely-spaced dark blotches medial to the two narrow stripes, and rusty-orange brown (in life) with scattered dark blotches ventrally and was consistent with what has been reported for *M. ditetra* and with museum specimens examined (Fig. 5; see Sawyer and Shelley 1976). Collections of *M. ditetra* from Florence, Hampton-Allendale, and Colleton counties represent new county records for the species in South
FIGURE 2. *Macrobdella sestertia* Whitman, 1886 from Sleepy Creek, Edgefield Co., South Carolina (CASIZ 224101). Specimens were photographed alive on 1 August 2008.
FIGURE 3. Distribution of *Macrobdella sestertia* Whitman, 1886 in Edgefield Co., South Carolina, USA.
Carolina (Appendix 1). Between the time of collection on 10 August 2011 and the date of preservation on 2 September 2011, the *M. ditetra* specimen was allowed to attach to and feed on two green tree frogs, *Hyla cinerea* (Schneider, 1799) (14 and 26 August), and on one southern leopard frog, *Lithobates sphenocephalus* (Cope, 1886) (21 August; Fig. 6). In each case, the leech attached to one of the rear legs of the frogs and was allowed to feed for 30 minutes to nearly two hours before it was removed and the frog hosts were released.

Coloration and pigmentation of *M. decora*, *M. diplotertia*, and *M. sestertia* are similar, with *M. ditetra* differing most from these three species. The coloration and pigmentation of South Carolina specimens of *M. sestertia* appear to be the same as those described by Whitman (1886). In fact, *M. decora* and *M. sestertia* appear to be nearly identical in their coloration and pigmentation as noted by Smith (1977). Ventral pigmentation of the caudal sucker of *M. sestertia* was not mentioned by Whitman (1886) or subsequent authors but is documented herein for the specimens from South Carolina; it agrees closely with Sawyer’s (1972) description for *M. decora* and that shown for *M. diplotertia* in McCallum et al. (2008). Pigments were faded on many of the museum specimens, thus, comparisons of pigment differences, particularly on the caudal suckers, could not be made using this material. The two preserved specimens in Fig. 1 were photographed immediately after preservation in 70% ethanol, and the orange-red color on the ventral surface began to fade rapidly (compare with that shown in photographs of live specimens [Fig 2]).
None of the *M. sestertia* or *M. ditetra* collected in South Carolina exhibited any variations in copulatory gland pore number or position. However, specimens of *M. decora* and *M. sestertia* from Maine displayed variations in pore count. One *M. decora* (MCZ 84111, larger specimen of two) was missing one anterior gland and pore, and one *M. sestertia* (MCZ 56624) had three additional pores associated with the two anterior and lateral copulatory glands. Copulatory gland pore number and pattern is one of the primary morphological characteristics used to separate species of *Macrobdella*. Variation in number and arrangement of copulatory gland pores has been noted for *Macrobdella decora* in Ontario, Georgia, South Carolina, and Maine (Moore 1922; Sawyer and Pass 1972; this study), *M. ditetra* in Louisiana (Moore 1953), and *M. sestertia* in Maine (this study). No variation in copulatory gland pore count or arrangement has been found in *M. diplopteria* (Turbeville and Briggler 2003). Most of the reported variants would not cause confusion in determining the species identity; however, one *M. decora* from Georgia had a pore count and pattern typical of *M. ditetra* (Sawyer and Pass 1972).

The unusual overlapping annuli observed on one specimen of *M. sestertia* in this study have not been mentioned for *Macrobdella* spp. by previous authors, but they have been observed occasionally in other genera and species of leeches (e.g., Blanchard 1893, 1894; Roy T. Sawyer, pers. comm.). A recent study of the *Macrobdella* spp. preserved at the National Museum of Natural History did not report any overlapping annuli (or variations in copulatory pores) (Phillips et al. 2016); however, the authors might have overlooked such variations because many museum specimens are contracted and curled due to preservation.

*Macrobdella sestertia* captured in Sleepy Creek on 31 July 2008 had a smaller species of leech associated with them. The smaller leeches detached during transport; therefore, detailed information on numbers occurring on each *M. sestertia* could not be obtained; however, it appeared that the largest *M. sestertia* had harbored most or all of the leeches. The nine smaller leeches were identified as *Placobdella nuchalis* and based on their sizes represent one adult (engorged with blood) and its offspring (Fig. 7, Appendix 1). The nuchal constriction remained on most of the juveniles after preservation, but the adult specimen contracted enough to obliterate the constriction and alter its morphology. *Placobdella nuchalis* was reported previously from two coastal plain counties in South Carolina (Sawyer and Shelley 1976), and the authors noted that records of *P. montifera* from the Savannah River in Patrick et al. (1967) possibly represented *P. nuchalis*. The specimens reported herein further support the statement of Sawyer and Shelley (1976). The only host reported for *P. nuchalis* was the bluegill, *Lepomis macrochirus* Rafinesque, 1819, collected in North Carolina (Shelley and Braswell 1981).

All of the streams from which *M. sestertia* were collected are in the upper portion of the Stevens/Turkey creek basin (Savannah River drainage) in northern Edgefield County. The streams had rocky bottoms with clear, shallow water, and the streams were under drought conditions when the collections were made. Leeches were found by moving or disturbing cobble-sized rocks. The leeches were agile swimmers, using undulations of the body for locomotion and were very active when disturbed. The coastal plain stream where *M. ditetra* was collected had clay and sand substrates with coarse organic debris.

It is unclear whether *M. sestertia* is a native species in South Carolina or is an accidental or intentional introduction. In 1797 in South Carolina, Dr. David Ramsay, “proposed . . . the practicability of introducing the leeches of this country into the practice of physic and surgery.” (Waring 1964:124), and in the early- and mid-1800s, advertisements for the sale of leeches appeared in several Charleston, SC newspapers, although many of the leeches were European imports (Hagy 1991). Both the European medicinal leech, *Hirudo medicinalis* Linné, 1758, and the North American medicinal leech, *M. decora*, were used in medicine in the U.S. (Smith 1843, 1845). A letter dated March 26, 1877 from E.M.
Seabrook of Sumter, SC requests that two leeches be shipped to him from an unspecified source (Ephraim Mikell Seabrook Papers, South Caroliniana Library, University of South Carolina). Therefore, historical records indicate the use of and distribution of leeches in the eastern United States and in South Carolina. It is possible that specimens of *M. sesteritia* were transported from New England, then were released or escaped. Sawyer (1973) presented information suggesting that *M. decora* in Lake Jemiki, South Carolina could have been introduced through discarded fishing bait. The records of *M. ditetra* from Colleton, Florence, and Hampton-Allendale counties, SC expands the distribution within the state (Sawyer and Shelley 1976).

The first report of *M. sesteritia* from New Hampshire was by Phillips et al. (2016) based on a collection from 1938 by Reeve Maclaren Bailey (1911–2011; see Stewart and Smith 2000) and James A. Oliver. Although unknown to Phillips et al. (2016), Bailey’s original field notes are available at the Fish Division, University of Michigan Museum of Zoology (UMMZ) and listed the fishes captured, amphibians seen or heard, and a note about large leeches consuming eggs.
Figure 8. Field notes for *Macrobdella* collections at Northwood Lake (aka Suncook Pond), Rockingham Co., New Hampshire on 3 June 1938 by Reeve M. Bailey and James A. Oliver. Courtesy of Fish Division, University of Michigan Museum of Zoology (UMMZ).

(Fig. 8; also see Bailey 1938). Under remarks for the smallmouth bass (*Micropterus dolomieu*), the notes read: “No yearlings taken. One abandoned nest with eggs seen. Several large leeches eating eggs.” The only leech specimens known to have been preserved by Bailey and Oliver from North-
wood Lake (aka “Suncook Pond”) on 3 June 1938 are USNM 1405211 (n = 3 *M. sestertia*) and USNM 50162 (n = 1 *M. decora*) (Phillips et al. 2016). This appears to be the first known case of predation on fish eggs by the genus *Macrobdella* and isn’t surprising considering that *Macrobdella* spp. prey on amphibian eggs/embryos and young and that other leeches are known to consume fish eggs (Richardson 1948; Light et al. 2005). The presence of American bullfrog, *Lithobates catesbeianus* (Shaw, 1802), and eastern newt, *Notophthalmus viridescens* (Rafinesque, 1820), in Northwood Lake was included in R.M. Bailey’s field notes and by Oliver and [J.R.] Bailey (1939). McCallum et al. (2008) noted a mimetic relationship between *N. viridescens* and *M. diplotertia*, and the same likely applies to *M. decora* and *M. sestertia*, which all have similar coloration.

This study documents the first reported occurrence of *Placobdella nuchalis* being attached to another leech, *M. sestertia*. Other leech associations have been reported for *Placobdella ornata* (as “*Clepsine ornata, Var. b. stellata*”) on *Macrobdella decora* in Connecticut (Verrill 1874; Moore 1952), for *P. picta* on *M. diplotertia* in Arkansas (Turbeville and Briggler 2003; Connior and Trauth 2010), and for other genera and species of leeches (Sawyer 1986b). The nature of these associations of *Placobdella* spp. with *Macrobdella* spp. is unknown but may be worthy of further investigation.

**ACKNOWLEDGMENTS**

The author thanks Roy T. Sawyer for sharing his expertise and ideas on taxonomy of the genus *Macrobdella*, for supplying the Blanchard references about anomalous annuli, and for giving helpful comments about the manuscript. Doug W. Nelson (Fish Division, University of Michigan Museum of Zoology) kindly provided copies of Reeve M. Bailey’s field notes from 1938. Museum staff at CAS, ChM, MCZ, and NCSM loaned or cataloged specimens. South Carolina Department of Natural Resources (SCDNR) Stream Team members assisted with collecting, and Holly Gillam (SCDNR) produced the Edgefield County map. Library staff at CAS provided some of the references. Lastly, my appreciation to Douglas Smith for his helpful comments.

**REFERENCES**


APPENDIX 1. MATERIAL EXAMINED

Macrobdella decora

MASSACHUSETTS: MCZ 56596 (formerly in University of Massachusetts, Amherst collection as UMA AN.404), n = 2, Rutland Brook, Barre, Worcester Co., 8 August 1988, A. Richmond, S. Jackson; MAINE: MCZ 84111, n = 2, Proctor Pond, Albany, Crooked/Presumpscot river system, Oxford Co., 44°14’36”N, 70°47’56”W, 15 July 1992, EMAP Program, U.S. EPA; SOUTH CAROLINA: Upper Lake Jemiki [also spelled Jemike] (Notes: the lower [downstream] and smaller of the two ponds is where swimmers were attacked by leeches according to the current landowner, Donald Payne and his two sons. Years ago, the lakes were drained and dried, which apparently eradicated the leech population [in conversation with W.J. Poly, 2011]), approx. 6 km WNW of Walhalla at end of Lake Jemiki Road (WA-3), Oconee Co. (no voucher specimens; Sawyer and Pass [1972]).

Macrobdella ditetra


Macrobdella sestertia


Placobdella nuchalis

SOUTH CAROLINA: CASIZ 224102, n = 9, Sleepy Creek, upstream of Sleepy Creek Road (SSR 62) and downstream of US Route 378, Edgefield Co., 33.92844°N / -81.97770°W, 31 July 2008, W.J. Poly [attached to M. sestertia].
Illustrated Key and Synopses of Shallow-water Gorgonians and Pennatulaceans of the Central Philippines, Part 2
(Cnidaria: Anthozoa: Octocorallia)

Gary C. Williams

Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA. E-mail: gwilliams@calacademy.org

This paper represents the second part of a two-part series that covers shallow-water sea fans and sea pens of the central region of the Philippine Archipelago, from the Verde Island Passage in southern Luzon to southern Negros and the Bohol Sea. The first paper (Williams and Chen, 2014), treated commonly encountered species from the region of the Verde Island Passage, and provided an assessment of the regional biogeographic setting, a key to the taxa, and a glossary of terms used in the key and the descriptions. Included were twenty-six genera in twelve octocoral families – Briareidae, Anthothelidae, Subergorgiidae, Melithaeidae, Acanthogorgiidae, Plexauridae, Gorgoniidae, Ellisellidae, Isididae, Veretillidae, Virgulariidae, and Pennatulidae. The present paper provides an illustrated key that deals with an additional ten species in nine genera of the families Keroeididae, Acanthogorgiidae, Plexauridae, Gorgoniidae, Ellisellidae, Ifalukellidae, and Scleroptilidae.

Keywords: Part 2, Illustrated key, gorgonian and pennatulacean octocorals, sea fans, sea pens, central islands of the Philippine Archipelago

During a fifteen year period from the early 1990s to 2017, field research has been conducted by invertebrate zoologists from the California Academy of Sciences regarding coral reef biotic surveys on several of the island groups of the approximately 7100 islands in the extensive Philippine Archipelago. A detailed introduction to this two part treatise, including synopses of the biogeographic setting, coral biodiversity, octocoral biology, and the current status of our knowledge of relevance, is contained in the first part of the study (Williams and Chen 2014:67–71).

Materials and Methods

The geographical area covered in this paper extends from the central region of the Philippines from the Lubang and Busuanga Islands in the northwest to Siquijor and Bohol in the southeast (Fig. 1). SCUBA diving operations on numerous coral reefs within this region were conducted between 2010 and 2017 in depths less than 40 m.

Regarding the collected material that was examined and described in this paper, the following fieldwork was conducted in the Philippines between 2010 and 2017: February 2010 Coral Triangle Expedition November; 2012 Coral Triangle Expedition; December 2013 Philippine Deep Reef Expedition; May 2014 Verde Island Passage Expedition; March/April 2015 Verde Island Passage Expedition; April 2016 Verde Island Passage Expedition; March/April 2017 Verde Island Passage Expedition. All material is currently housed in the marine invertebrate collections of the Depart-
Figure 1. Map of the Philippine Archipelago, showing major islands of the central Philippines shaded in blue.
Sclerites from octocoral tissues were obtained using the procedure outlined by Williams and Mattison (2018). Scanning electron micrographs were made using a Hitachi SU3500 Scanning Electron Microscope. All skeletal material for SEM examination was coated with gold/palladium using a Cressington 108 Auto Sputter Coater.

Williams and Chen (2014) provides a glossary of terms used in the keys and descriptions. That source is also applicable for use in the present paper. For additional terms used in this paper that may not be present in the 2014 glossary, see Bayer et al. (1983).

**Key to additional shallow-water Gorgonians and Pennatulaceans of the Central Philippines**

1a. Unbranched octocorals composed of a sterile stalk and polyp-bearing rachis, imbedded in unconsolidated sediments (such as sand, mud or gravelly rubble) by a basal muscular peduncle. Calcified central axis extends throughout length of colony. Sclerites absent. ............ Calibelemnom indicum (Fig. 26A)

1b. Branched octocorals attached to hard substrata by a basal holdfast. Axial material highly variable – composed of sclerites, a hard dark protein, or consolidated calcium carbonate. Sclerites present and abundant, highly variable in shape and size. ................. 2

2a. Axis segmented, composed of alternating swollen, rounded nodes and straight, elongate internodes. Branching occurs at the nodes. Axial sclerites are smooth rods. Melithaea spp. (Fig. 2)

2b. Axis uniform throughout, composed of sclerites, a dark proteinaceous material, or a light-colored predominantly calcareous material .............. 3

3a. Axis composed of sclerites, some of which are imbedded in a proteinaceous matrix. Colonies copiously branched, red in color, with conical polyp calyces that are not particularly densely-set or crowded on the branches ......................... Kerocides gracilis (Figs. 3-4)

3b. Axis composed of hard proteinaceous material or with solid calcareous material ............ 4

4a. Axis of hard, usually dark, proteinaceous material in concentric layers around a narrow hollow cross-chambered core. .......................................................... 5

4b. Axis of solid, predominantly calcareous material that can be white to variably-colored ... 9

5a. Polyps non-retractile, forming long cylindrical or dome-shaped projections perpendicular to the branches. Polyp wall sclerites arranged en chevron .......... Anthogorgia spp. (Figs. 5–8)

5b. Polyps fully retractile into conical permanent calyces, or retractile forming small mounds. 6

6a. Polyps retractile into small, conical or hemispherical, permanent calyces ........................ 7

6b. Polyps retractile into coenenchyme forming small rounded mounds, calyces absent ...... 8

7a. Sclerites of the calyces and surface of the coenenchyme are rosettes ......................... Bebryce grandicalyx (Figs. 9–11)

7b. Sclerites of the polyps, calyces, and surface coenenchyme are triradiates, thornscales, and spindles ....................................................... Trimuricea inermis (Figs. 12–15)

8a. Sclerites are clubs, spindles, and large rods ............ Hicksonella princeps (Figs. 16–18)

8b. Sclerites include curved and irregularly-shaped spindles .... Pinnigorgia flava (Figs. 19–21)

9a. Sclerites are minute, flattened ovals .................. Plunigorgia hydroides (Figs. 25–27)

9b. Sclerites are clubs, capstans, and/or double heads .................................................. 10

10a. Sclerites are clubs and capstans ..................... Heliania spinescens (Figs. 22A, 23)

10b. Sclerites are double heads................................. Verrucella spp. (Figs. 22B–C, 24)
SYSTEMATIC ACCOUNT

Alcyonacea Lamouroux, 1816

Family Melithaeidae Gray, 1870

Melithaea spp.

Figure 2

REMARKS.— In part 1 of this study, Williams and Chen (2014:76-77) distinguished the genus Acabaria from Melithaea. Fabricius and Alderslade (2001) recognized the intermediate nature of particular morphological features that were used by previous authors to distinguish between several melithaeid genera, and suggested that with future research the several melithaeid genera might eventually be synonymized with the first described genus Melithaea. Subsequently, Alderslade (2006) and Reijnen et al. (2014) maintained that there are two valid genera of melithaeids (Melithaea Milne Edwards and Haime, 1857, and Asperaxis Alderslade, 2006), and that molecular and morphological evidence suggests that five previously recognized genera (Acabaria, Clathraria, Melitodes, Mopsella, and Wrightella) are best recognized as synonyms of the genus Melithaea.


Family Keroeididae Kinoshita, 1910

Genus Keroeides Studer, 1887

Keroeides gracilis Whitelegge, 1897

Figures 3, 4

MATERIAL EXAMINED.— CASIZG 201396; Philippines, Occidental Mindoro, Lubang Island (13.77°N 120.12°E); ca. 34 m depth; 31 May 2014; coll. G.C. Williams; one whole colony wet-preserved in 95% ethanol.

REMARKS.— Colonies of this species are planar or nearly so, are copiously branched, and exhibit lateral branching. The calyces of the polyps are conspicuous and conical in shape, and are not particularly densely set or crowded on the branches. The sclerites of the outer coenenchyme are large spindles with relatively small tubercles that are uniformly-distributed over the sclerite surface. Due to the numerous and densely-disposed spindles of the surface of the colonies, these sea fans are relatively fragile or brittle, not exhibiting a high degree of flexibility without sustaining breakage of some branches. The tissues do not harbor zooxanthellae. The color of the colony examined here is brick red with pale yellow anthocodiae. Kükenthal (1924) and Bayer (1949) consider Keroeides gracilis as a junior synonym of K. koreni Wright and Studer, 1889. However, Grasshoff (1999) and Grasshoff and Bargibant (2001) disagree and maintain that they are separate species — K. gracilis from mesophotic reefs (30–164 m), red in color with yellow polyps, and K. koreni from deeper water (250–450 m), brick red in color throughout. I therefore concur with Grasshoff’s assessment and consider Keroeides gracilis to as the proper identification in this case.

SPECIES.— There are six described species in the genus. Color of the various species can vary from orange to deep red, or white to light grey or tan.

OCCURRENCE AND DISTRIBUTION.— The genus is widely distributed in the Indo-Pacific, Red Sea to Japan, New Caledonia, and Hawaii; usually encountered below 30 m, mostly in mesophotic depths or deep sea, rarely seen in shallower depths. Keroeides gracilis is widely distributed in
and to the east of the Coral Triangle and is known from central Indonesia, the Philippines, New
Guinea, Northern Mariana Islands, Palau, Tuvalu, and New Caledonia.

**REFERENCES.**—Bayer (1949, 1981); Fabricius and Alderslade (2001); Grasshoff (1999); Grasshoff and Bargibant (2001); Kükenthal (1924); Ofwegen (2010c).

**Family Acanthogorgiidae Gray, 1859**

**Anthogorgia spp.**

*Genus Anthogorgia Verrill, 1868*

*Figures 5, 6, 7, 8*

**Material Examined.**—CASIZG 207505; Philippines, Romblon Province, Cobrador Island (12.65170 N 122.23086 E); 20 m depth; 20 February 2010; coll. G.C. Williams; one partial colony wet-preserved in 95% ethanol. CAS 222412; Philippines, Luzon, Batangas Province, Caban Island, Kirby’s Rock (13.69°N 120.84°E); 30 March 2017; coll. G.C. Williams; one partial colony wet-preserved in 95% ethanol.

**Remarks.**—These are mostly planar sea fans often up to or exceeding 0.5 m in height with lateral branching. The coenenchyme is relatively thick giving the branches a thicker appearance compared to most other sympatric sea fans. The polyps are non-retractile and conspicuous, often tall and cylindrical or domelike in shape. Colony color deep orange to reddish brown, tips of polyps often yellowish. Polyp and coenenchyme sclerites are robust spindles with numerous tubercles covering the entire surface. Many of these tubercles are strongly displayed — large and rounded to oval in shape.

**Species.**—The genus *Muricella* Verrill, 1968, is quite similar to *Anthogorgia* and may eventually be shown to be synonymous with it (Fabricius and Alderslade 2001). There are 34 described species that are currently recognized as belonging to *Muricella*, and thirteen described species in *Anthogorgia*, Sveral species may be present in the Philippines. There has been a considerable amount of confusion in past literature with superficial similarities regarding other gorgonian genera such as *Muricella* (Acanthogorgiidae), *Astrogorgia* (Plexauridae), and *Nicella* (Ellisellidae) pertaining to the gross morphology of whole colonies.

**Occurrence and Distribution.**—Infrequently encountered on coral reef slopes in the central Philippines. The genus is known from throughout much of the Indo-West Pacific.

**References.**—Fabricius and Alderslade (2001); Grasshoff (1999); Grasshoff (2000); Grasshoff and Bargibant (2001); Ofwegen (2010d).

**Family Plexauridae Gray, 1859**

**Genus Bebryce Philippi, 1841**

*Bebryce grandicalyx* (Kükenthal, 1924)

*Figures 9, 10, 11*

**Material Examined.**—CASIZG 216253; Philippines, Visayas, Siquijor Isalnd, Tambisan Point North (9.18°N 123.45°E); 24 m depth; 2 April 2016; coll. G.C. Williams; one partial colony wet-preserved in 95% ethanol. CASIZG 216316 (same data as CASIZG 216253).

**Remarks.**—The genus *Bebryce* is characterized by the possession of unique sclerites known as rosettes – also referred to as double cups or spiny rosettes (Bayer et al. 1983:18), commonly found in the surface of the coenenchyme. Bayer and Ofwegen (2016) provided a revision and re-examination of type material of all species of the genus. In addition, Matsumoto and Ofwegen (2016) described three additional new species from Japan. According to these works, the two
Philippine specimens examined here most closely resemble the Indonesian species *Bebryce grandicalyx*, by the appearance of the colonies as well as that of the rosettes and other sclerites. The colonies in life are vivid red to red-orange, and change to dark-brown when wet-preserved in ethanol.

**Species.**—Twenty-seven described species are currently recognized.

**Occurrence and Distribution.**—The genus *Bebryce* is distributed in the Indian, Pacific, and tropical western Atlantic oceans. Twenty-four species have been described from the Indo-Pacific. Three species were described by Deichmann (1936) from the Bahamas, Gulf of Mexico, and Caribbean Sea — *Bebryce cinerea*, *B. grandis*, and *B. parastellata*.

**References.**—Deichmann (1936); Ofwegen (2010f); Bayer and Ofwegen (2016); Matsumoto and Ofwegen (2016).

**Genus Trimuricea** Gordon, 1826

*Trimuricea inermis* (Nutting, 1910)  
Figures 12, 13, 14, 15

**Material Examined.**—CASIZG 207510; Philippines, Negros, Siaton Province, Si-it; 21 m depth; 5 April 2016; coll. G.C. Williams; one whole colony wet-preserved in 95% ethanol.

**Remarks.**—Samimi-Namin and Ofwegen (2016) provided a taxonomic revision of the genus and added several new species from the Indian Ocean. According to their revision, the specimen examined here is most similar to *T. inermis* regarding colony shape and sclerite shape and size, but it would be beneficial to compare it with type material to better elucidate the taxonomic status of the Philippine material. Sclerites of the genus *Trimuricea* are unusual, in that the sclerite complements of the polyps and calyces are dominated by triradiates and thornscales. The color of living colonies of the Philippine material is pinkish red, turning to light brown when preserved in ethanol (Fig. 12).

**Species.**—Eleven described species, according to Samimi-Namin and Ofwegen (2016) and Ofwegen (2010e). Nine of the eleven species are distributed in the Indian Ocean.

**Occurrence and Distribution.**—The genus has an Indo-West Pacific distribution, and is rarely or infrequently encountered at many localities.

**References.**—Grasshoff (1999); Fabricius and Alderslade (2001); Ofwegen (2010e); Samimi-Namin and Ofwegen (2016).

**Family Gorgoniidae** Lamouroux, 1812

**Genus Hicksonella** Nutting, 1910

*Hicksonella princeps* Nutting, 1910  
Figures 16, 17, 18

**Material Examined.**—CASIZG 201363; Philippines, Occidental Mindoro Province, Lubang Island (13.79 N 120.09 E); 23 May 2014; coll. G.C. Williams; one partial colony wet-preserved in 95% ethanol.

**Remarks.**—*Hicksonella princeps* is similar in superficial appearance and can be confused with another sympatric zooxanthellate gorgonian, *Rumphella aggregata*. *H. princeps* differs by having a more gracile appearance, with thinner branches which are often more pointed at the tips. *R. aggregata* is more robust with thicker branches with more rounded tips. Both species are similar in colony color — varying from tan or grey to light brown or yellowish brown. In addition, similarly-shaped club-like sclerites are found in the surface of the coenenchyme of both species.
(Fig. 17; Williams and Chen, 2014:119). However, *Hicksonella* differs from *Rumphella* by having some large rods in the inner coenenchyme that are relatively smooth at one end and conspicuously ornamented at the other end (Fig. 18: top row, second from the left). These are often undetected or overlooked. All sclerites in both species are colorless.

Many of the sclerites in the present material examined here differs somewhat from other known material of the species from outside the Philippines by having strongly acute or sharply pointed tips on the lateral tubercles (Figs. 17, 18).

**Species.**—There are two other described species in the genus, *Hicksonella guishanensis* Zou and Chen, 1984, and *Hicksonella expansa* Alderslade, 1986.

**Occurrence and Distribution.**—*Hicksonella princeps* is a zooxanthellate species that inhabits shallow-water areas of coral reef flats and slopes, usually less than 15 m in depth. It has been encountered in the northeastern part of central Philippines — the Calatagan Peninsula and the Lubang Islands Group. The genus *Hicksonella* is known only from the tropical western Pacific.


**Genus Pinnigorgia** Grasshoff and Alderslade, 1997

*Pinnigorgia flava* (Nutting, 1910)

Figures 19, 20, 21

**Material Examined.**—CASIZG 201640; Philippines, Luzon, Batangas Province, Calatagan (13.92°N 120.60°E); 8 m depth; 19 May 2014; coll. G.C. Williams; three partial colonies wet-preserved in 95% ethanol. CASIZG 201407; Philippines, Lubang Island (13.78°N 120.10°E); 12 m depth; 30 May 2014; coll. G.C. Williams; one partial colony wet-preserved in 95% ethanol. CASIZG 222415; Philippines, Romblon Province, Cobrador Island (12.65°N 122.23°E); 11 m depth; 6 April 2017; coll. G.C. Williams; one whole colony wet-preserved in 95% ethanol.

**Remarks.**—The colonies are richly-branched, the branches are planar and pinnate, and the tissues harbor zooxanthellae. The Philippine material exhibits similarities to the description of *Pinnigorgia flava* provided by Grasshoff and Alderslade (1997), in that the sclerites are relatively elongate — often >0.1 mm in length and somewhat curved. Color of the colonies in life as well as wet-preserved varies from cream-white or pale yellow to tan.

**Species.**—There are two other described species in the genus besides *Pinnigorgia flava*— *Pinnigorgia perroteti* (Stiasny, 1940) and *Pinnigorgia platystoma* (Nutting, 1910).

**Occurrence and Distribution.**—The genus is known from the tropical western Pacific Ocean — the Philippines, Sabah, Indonesia, and Palau. *Pinnigorgia flava* in the Philippines occupies shallow-water reef flats or gentle slopes, usually not in areas with consistently strong bottom currents.

**References.**—Grasshoff and Alderslade (1997); Fabricius and Alderslade (2001).

**Family Ellisellidae** Gray, 1859

*Heliania spinescens* Gray, 1860

**Genus Heliania** Gray 1860

Figures 22A, 23

**Material Examined.**—CASIZG 222404; Philippines, Batangas Province, Caban Island, Kirby’s Rock; 34 m depth; 30 March 2017; coll. Peri Paleracio, one whole colony wet-preserved in 95% ethanol.

**Remarks.**—Colonies are richly branched with lateral branching. The contracted polyps form numerous, conspicuous mounds that are congested along the branches. They are digitiform in
shape and often curve upward. Three genera in the family Ellisellidae have club-shaped sclerites in which the head has clusters of upward-facing tubercles — *Dichotella*, *Heliania*, and *Juncella*. Many of the club-like sclerites in *Heliania* have tubercles with acute tips that are relatively sharply pointed. Philippine specimens are bright red to brick-red in color, while colonies from other regions such as Papua New Guinea, Indonesia, Palau, and New Caledonia are usually reddish orange to orange or yellow-orange.

**Species.**— *Heliania spinescens* is one of only two described species in the genus, the other is *Heliania racemosa* (Wright and Studer, 1889).

**Occurrence and Distribution.**—Encountered infrequently on deeper reefs, mostly at mesophotic depths in the Philippines (ca. 34–95 m). The genus is widespread in the Indo-West Pacific region from approximately 23–600 m in depth.

**References.**—Fabricius and Alderslade (2001); Grasshoff (1999); Grasshoff and Bargibant (2001).

**Genus Verrucella Milne-Edwards and Haime, 1857**

*Verrucella* spp.  
Figures 22B, 22C, 24

**Material Examined.**—CASIZG 197809; Philippines, Batangas Province, Caban Island (13.69°N 120.84°E); 40 m depth; 16 December 2013; coll. Sonia Rowley; one partial colony wet-preserved in 95% ethanol. CASIZG 197824; Philippines, Batangas Province, Caban Island (13.69°N 120.84°E); 27 m depth; 16 December 2013; coll. Sonia Rowley; one partial colony wet-preserved in 95% ethanol.

**Remarks.**—The genus *Verrucella* is related to *Heliania*, but does not have any club-shaped sclerites. The sclerites in *Verrucella* are double heads (dumbbell-shaped) with a smooth narrow middle or waist. Spindles are also present. Both the double heads and spindles have oval-shaped tubercles with many acute triangular teeth. *Verrucella* has relatively short side branches, which are often more-or-less perpendicular to the main branches. The contracted polyps form low rounded mounds on the branches and are more sparsely distributed — not as highly congested as in *Heliania*.

**Species.**—There are twenty six described species in the genus.

**Occurrence and Distribution.**—Several species of *Verrucella* may be present in the central Philippines, occasionally encountered at mesophotic depths (usually below 30 m). The genus has a wide-ranging Indo-Pacific distribution.

**References.**—Fabricius and Alderslade (2001); Grasshoff (1999); Grasshoff (2000); Grasshoff and Bargibant (2001).

**Family Ifalukellidae Bayer, 1955**

**Genus Plumigorgia Nutting, 1910**

*Plumigorgia hydroides* Nutting, 1910  
Figures 25, 26B, 26C, 27

**Material Examined.**—CASIZG 180888; Philippines, Palawan Province, Calamian Group, Busuanga Island; 10 m depth; 24 February 2010; coll. G.C. Williams; one colony in several pieces wet-preserved in 95% ethanol. CASIZG 207506; Philippines, Palawan Province, Calamian Group, Busuanga Island; 12 m depth; 24 February 2010; coll. G.C. Williams; one partial colony wet-preserved in 95% ethanol.

**Remarks.**—Colonies with branches that are planar and pinnate, very thin, gracile, and flexi-
ble. Sclerites are small plate-like structures, more-or-less ovoid in shape, with coarse surfaces and no tubercles. Some sclerites are slightly restricted in the middle. Retracted polyps form numerous, minute conical bumps on the branches, or they retract completely into the coenenchyme. Colony color in life is white or cream-white.

**Species.**—There are five described species in the genus *Plumigorgia hydroides* (Indonesia, Philippines, Northwestern Australia); *P. schuboti* Alderslade, 1986 (Great Barrier Reef, New Caledonia); *P. terminosclera* Alderslade, 1986 and *P. astroplethes* Alderslade, 1986 (Great Barrier Reef) and *P. wellsi* Bayer, 1955 (Marshall Islands).

**Occurrence and Distribution.**—*Plumigorgia hydroides* is a presumably zooxanthellate species that inhabits shallow coral reef flat and gentle slopes that exhibit frequent periods of substantive water movement. It has been observed in the eastern part of the central Philippines in the vicinity of Busuanga Island.

**References.**—Alderslade (1986b); Bayer (1955); Bryce and Poliseno (2014); Fabricius and Alderslade (2001); Grasshoff and Bargibant (2001).

---

**Pennatulacea Verrill, 1865**

**Family Scleroptilidae Jungersen, 1904**

**Genus Calibelemnon** Nutting, 1908

**Calibelemnon indicum** (Thompson and Henderson, 1906)

*Figure 26A*

**Material Examined.**—CASIZG 201545; Philippines, Luzon, Batangas Province, Calumpan Peninsula, Balayan Bay (13.72° N 120.87° E); 40 m depth; 2 May 2014; coll. Peri Paleracio; one whole colony wet-preserved in 95% ethanol.

**Remarks.**—*Calibelemnon indicum* is a very thin and delicate sea pen with two longitudinal columns of polyps, in which the polyps are oppositely arranged along the length of the rachis. The axis is visible through the thin tissues of the rachis and peduncle. Siphonozooids are conspicuous as numerous low mounds in opposite columns along the rachis. Sclerites are absent altogether.

**Species.**—Four species are described — *Calibelemnon hertwigi* (Balss, 1909), *Calibelemnon symmetricum* Nutting, 1908, *Calibelemnon indicum* (Thompson and Henderson, 1906), and *Calibelemnon francei* Williams and Alderslade, 2011. The latter two species are considered valid, while the status of the former two is uncertain.

**Occurrence and Distribution.**—*Calibelemnon* is a rarely encountered genus from mesophotic depths and the deep-sea in the Indo-West Pacific (southeastern Africa to Japan and the Philippines, 40-1275 m) and the Western Atlantic (Bahamas Escarpment, 1969 m). In the Philippines, *Calibelemnon indicum* is known only from a single collection off the Calumpan Peninsula at 40 m depth, inhabiting deeper reefs in areas of unconsolidated sediments.

**References.**—Kükenthal (1915); Ofwen (2010c); Williams (1990); Williams (1995); Williams (1999); Williams (2011); Williams and Alderslade (2011).

**Discussion and Conclusion**

The Philippines comprises the northern-most portion of the Coral Triangle in the tropical western Pacific, and covers a relatively extensive longitudinal gradient (Williams and Chen 2014: Figs. 1A, 2A). The Philippine Archipelago, encompassing an estimated 7100 islands, is certainly one of the richest regions in the world (if not the richest region), with regard to coral reef biodiversity.

The first part of this study (Williams and Chen 2014) covered twenty-two genera of gorgoni-
ans and pennatulaceans from the Verde Island Passage region (VIP). The present paper treats several island groups of the central Archipelago as well as the VIP, and an additional ten genera—making a total of thirty-two genera covered, representing approximately forty species.

The number of species inhabiting the Philippine Archipelago belonging to these thirty-two genera is undeterminable at present. This is due in part to the necessity of taxonomic revisions of many Indo-Pacific octocoral genera to determine the actual number of valid species, as well as the relatively recent trend in the scientific community toward a decrease of trained taxonomists to do the necessary work of revision (Fabricius and Alderslade 2001:vii).

ACKNOWLEDGMENTS

Funding for fieldwork in the Philippines was made possible by NSF-DEB grant 1257630 to Terrence Gosliner, Kent Carpenter, Richard Mooi, Luiz Rocha and Gary Williams (Collaborative proposal: documenting diversity in the apex of the coral triangle: inventory of Philippine marine biodiversity), and by the Lindsay Field Research Fund of the California Academy of Sciences. I thank Peri Paleracio and Sonia Rowley for collection of some of the octocoral specimens, and Christina Piotrowski, Johanna Loacker, and Elizabeth Kools for curation of collected material at the California Academy of Sciences in San Francisco.

All the specimens from the Philippines were collected under our Gratuitous Permits (GP-0077-14, GP-0085-15). This is part of the joint Department of Agriculture-NFRDI-California Academy of Sciences Memorandum of Agreement for the ongoing implementation of the National Science Foundation-funded biodiversity expeditions for biotic surveys of Philippine coral reefs. The specimens were collected in accordance with the terms and conditions of the gratuitous permit and under the supervision of our partners from BFAR Fisheries Regulatory and Quarantine Division and NFRDI. I thank Ludivina Labe of the Bureau of Fisheries and Aquatic Resources (BFAR) and November Romena of the National Fisheries and Research Development Institute (NFRDI) for helping to make our work possible in the Philippines and for their continued support.

In addition, I am grateful to anonymous reviewers for their thoughtful comments.

LITERATURE CITED


BAYER, F.M., AND L.P. VAN OEWEGEN. 2016. The type specimens of Bebryce (Cnidaria, Octocorallia, Plexauridae) re-examined, with emphasis on the sclerites. Zootaxa 4083 (3):301–358.

BRYCE, M., AND A. POLISENO. 2014. Two new records of octocorals (Anthozoa, Octocorallia) from north-west
Australia. Records of the Western Australian Museum 29:159–168


Figure 2. Underwater photographs of various species of *Melithaea* from the central Philippine islands; those in A, C, and D were formerly included in the genus *Acabaria*, which is now considered as a junior synonym of *Melithaea*. 
Figure 3. *Keroeides gracilis*. A. Entire wet-preserved colony (CASIZ 201396); scale bar = 30 mm. B. Detail of lower portion of colony in A; scale bar = 10 mm.
Figure 4. *Keroeides gracilis*. Scanning electron micrographs of sclerites from the coenenchyme and calyces (CASIZ 201396). A-D, sclerites from the coenenchymal surface. E-N, sclerites from various calyces. Scale bar = 0.3 mm.
Figure 5. *Anthogorgia* sp. indet. Underwater photographs, Calumpan Peninsula, March/April 2017. A. Anthocodiae retracted into the domelike proximal parts of the polyps. B. Anthocodiae fully expanded from the cylindrical proximal parts of the polyps.
Figure 6. *Anthogorgia* spp. Wet-preserved specimens. A. *Anthogorgia* sp. 2, partial colony (CASIZG 207505), scale bar = 50 mm. B. *Anthogorgia* sp. 1, partial colony (CASIZG 222412), scale bar = 30 mm.
Figure 7. Anthogorgia sp. 1. Scanning electron micrographs of sclerites from the polyp walls and surface of the coenenchyme (CASIZG 222412), scale bar = 0.20 mm.
Figure 8. *Anthogorgia* sp. 2. Scanning electron micrographs of sclerites from the polyp walls and surface of the coenenchyme (CASIZG 207505), scale bar = 0.03 mm.
Figure 9. A. *Bebryce grandicalyx*. A-B. Underwater photographs of two colonies with polyps extended, southeastern Negros Island. C. Wet-preserved specimen (CASIZ 216253), Siquijor Island, scale bar = 50 mm.
Figure 10. *Bebryce grandicalyx*. Scanning electron micrographs of sclerites; rosettes from the surface of the coenenchyme, scale bar = 0.10 mm.
Figure 11. *Bebryce grandicalyx*. Scanning electron micrographs of sclerites. Four polyp sclerites (Top left); sclerites of the coenenchyme (Bottom half of figure), scale bar = 0.10 mm. A single rosette (Inset), scale bar = 0.05 mm.
Figure 12. *Trimuricea cf. inermis* (CASIZ 207510). A. Underwater photograph, Negros (Siato Province), April 2016. B. Wet-preserved colony, scale bar = 20 mm.
FIGURE 13. Trimuricea cf. inermis. Scanning electron micrographs of sclerites from the polyps, calyces, and surface coenenchyme, scale bar = 0.10 mm.
Figure 14. Trimuricea cf. inermis. Scanning electron micrographs of sclerites from the polyps, calyces, and surface coenenchyme, scale bar = 0.10 mm.
FIGURE 15. *Trimuricea cf. inermis*. Scanning electron micrographs of sclerites from the calyces and surface of the coenenchyme. Scale bar = 0.10 mm.
Figure 16. Hicksonella princeps. A. Underwater photograph, Lubang Island, May 2014. B. Wet-preserved partial colony (CASIZG 201363), Lubang Island, May 2014, scale bar = 25 mm.
**Figure 17. Hicksonella princeps.** Scanning electron micrographs of sclerites from the surface coenenchyme, scale bar = 0.03 mm.
**Figure 18. Hicksonella princeps.** Scanning electron micrographs of sclerites from the subsurface coenenchyme, scale bar = 0.10 mm.
FIGURE 19. Pinnigorgia flava. Underwater images. A. Coral reef with numerous colonies, Lubang Island, 14 m depth. B. A single colony, Lubang Island, 12 m depth.
Figure 20. *Pinnigorgia flava*. Wet-preserved colonies (CASIZG 201640). A. Scale bar = 20 mm. B. Scale bar = 25 mm. C. Scale bar = 10 mm.
Figure 21. *Pinnigorgia flava*. Scanning electron micrographs of coenenchymal sclerites, scale bar = 0.08 mm.
Figure 22. Heliania spinescens and Verrucella spp. A. Heliania spinescens, whole colony (CASIZG 222404), scale bar = 30 mm. B. Verrucella sp. 1, partial colony (CASIZG 197824), scale bar = 35 mm. C. Verrucella sp. 2, partial colony (CASIZG 197809), scale bar = 20 mm.
Figure 23. *Heliania spinescens*. Scanning electron micrographs of coenenchymal sclerites, scale bar = 0.02 mm.
Figure 24. *Verrucella* spp. A. Scanning electron micrographs of internal axis and sclerites (CAS 197809). Scale bar for sclerites = 0.02 mm. Upper left, a portion of bare axis from a terminal branch with a lateral branch broken off near its base, scale bar = 0.5 mm. B. Scanning electron micrographs of sclerites (CAS 197824), scale bar = 0.02 mm. Lower right, Detail of a single multi-toothed tubercle from the sclerite on the adjacent left, scale bar = 0.002 mm.
Figure 26. A. Calibelemnon sp., wet-preserved whole specimen (CASIZG 201545), scale bar = 15 mm. B. Plumigorgia hydroides, wet-preserved specimens (CASIZG 207506), scale bar = 20 mm. C. Plumigorgia hydroides (CASIZG 180888), scale bar = 35 mm.
FIGURE 27. *Plumigorgia hydroides*, scanning electron micrographs. A. Surface of axis: Left, portion of axis near a distal branch tip, scale bar = 0.2 mm. Right, magnified detail of surface showing slit-like surface perforations, scale bar = 0.02 mm. B. Coenenchymal sclerites, scale bar = 0.02 mm.
Synopsis of the Snakes of the Philippines
A Synthesis of Data from Biodiversity Repositories,
Field Studies, and the Literature

Alan E. Leviton 1, 4*, Cameron D. Siler 2, 5, Jeffrey L. Weinell 3, and Rafe M. Brown 3, 5*

1 Herpetology Division, Institute of Biodiversity Science & Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118; Email: aleviton@calacademy.org. 2 Department of Biology and Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Ave., Norman, OK 73072-7029, USA; Email: camsiler@ou.edu. 3 Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045; Email: (JW) jweine2@gmail.com; (RB) rafe@ku.edu. 4 Research Associate, Division of Amphibians & Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. 5 Zoology Division, National Museum of the Philippines, Rizal Park, Burgos Ave., Ermita 1000, Manila, Philippines.

* Corresponding authors: AEL (aleviton@calacademy.org); RMB (rafe@ku.edu)

Table of Contents

Introduction .................................................................................................................. 401
Museum symbolic codes ........................................................................................... 402
Acknowledgments ...................................................................................................... 403
Synopsis of Snakes of the Philippines ...................................................................... 405
Superfamily Typhlopoidea ...................................................................................... 407
Family Gerhophiidae .............................................................................................. 407
Family Typhlopidae, Subfamily Asiatyphlopinae .................................................... 407
Superfamily Pythonoidea ....................................................................................... 412
Family Pythonidae .................................................................................................... 412
Family Xenopeltidae ................................................................................................. 413
Superfamily Acrochordoidea .................................................................................. 414
Family Acrochordidae ............................................................................................ 414
Superfamily Colubrioidea ....................................................................................... 414
Family Pareidae ........................................................................................................ 414
Family Homalopsidae .............................................................................................. 415
Family Colubridae .................................................................................................... 417
Subfamily Ahaetullinae ............................................................................................ 417
Subfamily Calamariinae ........................................................................................... 422
Subfamily Colubrinae ............................................................................................... 429
Subfamily Natricinae ................................................................................................ 444
Subfamily Sibynophiinae ....................................................................................... 448
Family Lamprophiidae .............................................................................................. 449
Subfamily Cyclocorinae .......................................................................................... 449
Subfamily (incertae sedis) Pseudaspidae ............................................................... 453
Family Elapidae ........................................................................................................ 453
Subfamily Elapinae ................................................................................................... 453
Subfamily Hydrophiinae .......................................................................................... 458
Subfamily Laticaudinae ............................................................................................ 468
Family Viperidae, Subfamily Crotalinae ................................................................. 470
General geographic distribution table by island ..................................................... 473
Bibliography ............................................................................................................. 483
Appendix .................................................................................................................... 509
Distribution maps ..................................................................................................... 510
Photo figures of living snakes .................................................................................. 547

PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES
Series 4, Volume 64, No. 14, pp. 399–568, 122 figs. [120 photos], 147 maps
March 29, 2018
The Philippine Archipelago, with major landmasses and other geographical features indicated.
Prepared by Jeffrey L. Weinell.
INTRODUCTION

An up-to-date synopsis of the snake fauna of the Philippine Archipelago is long overdue. Nearly 100 years have elapsed since Edward Harrison Taylor published his comprehensive volume, *The Snakes of the Philippines* (Taylor 1922a), and since then a significant volume of literature has appeared and extensive field survey and site inventory fieldwork has been conducted. The latter, launched in the 1960s with the exploits of Drs. Angel C. Alcala (Silliman University, Dumaguete City, Philippines), and the late Walter C. Brown (Menlo College, Menlo Park, California), has continued in recent years by Charles Ross, Ronald Crombie, and the extensive field studies of Arvin Diesmos, Rafe Brown, Cameron Siler, Maren Gaulke, and their colleagues and students in the Philippines, United States, and Europe.

In this synopsis, we provide basic information relating to each of the currently known species of snakes that has been recorded from the Philippines. The references included with each account provide guidance to literature that contains additional information; for instance, we provide skeletal synonymies (chresonymies, *sensu* Smith and Smith [1972:445]) that include references to literature in which more extensive synonymy compilations are available, notably in the publications of Taylor (1922a), Leviton (*et seq.*), as well as recent compilations by Murphy et al. (2012), McDiarmid et al. (1999), Wallach et al. (2014), Uetz et al. (2018, *The Reptile Database*). We also provide a comprehensive bibliography to the literature and, where possible, photographs of living animals.

We take note of at least one recent compilation that deals with the venomous snakes of the Archipelago by Leviton, Brown and Siler (2014), and of a cluster of recent reports of biodiversity surveys by Brown, Diesmos, Siler, and colleagues (1996–2015) and Gaulke (1986–2011), that have vastly increased our knowledge of the breadth of faunal complexities and species distributions. We highlight the discovery of numerous new species and include these in the archipelago’s fauna for the first time. We also call the reader’s attention to several earlier seminal articles that dealt with patterns of distribution of the Philippine herpetofauna, among them, Taylor (1922a, 1928), Inger (1954, on amphibian distribution in the Philippines; 1999), Leviton (1963), Brown (WC) and Alcala (1970), Inger and Voris (2001), Siler et al. (2011, 2012, 2013), Diesmos et al. (2014, 2015), Diesmos, Alcala, Siler, and (RM) Brown (2014), Brown et al. (1995, 2000, 2012, 2013), and Sanguila et al. (2016).

Higher-level classification of snakes has changed dramatically over the past decade, primarily as a result of several large, well-sampled phylogenetic analyses of DNA sequence data. Contributions by Vidal (2007), Vidal et al. (2010), Pyron et al. (2011, 2013), Figueroa et al. (2016), and Weinell & Brown (2017) have proposed broad nomenclatural changes to traditional classifications of the last century, many of which have been readily adopted by snake systematists — whereas others have been met with skepticism. For the most part, these studies have been based on molecular data from few loci and, thus, may be expected to change and/or be overturned in the near future by impending combined analyses of genomic and phenotypic data, which show promise for creditable, well-supported phylogenetic estimates, and, we hope, stable resulting classifications. In anticipation of comprehensive phylogenomic snake studies, and acknowledging the subjectivity inherent in currently proposed higher-level ranks, we have adopted a tentative suprafamilial arrangement for this summary of Philippine snakes reflecting current taxonomic summaries (e.g., Wallach et al. 2014). This conservative approach reflects our view that this paper is not the appropriate venue to enter into a discussion of the merits of recently proposed classifications. For example, we do not take a stance on the advisability of partitioning the Colubroidea into named suprafamilial groups, e.g., Pareatoidea, Elapoidea, Viperoidae (*fide* Vidal et al. 2007), because we expect estimates of relationships, and support for many clades, to change significantly in the near future.

Information relating to Conservation Status of included species was retrieved from the online IUCN Red List of Threatened Species (Version 2016–3.1 <www.iucnredlist.org>, downloaded on
10 March 2017), which we explored for a crude, preliminary appraisal of the conservation status of the populations of snakes inhabiting the Philippine Islands. Although many of the species are referenced as either “Data Deficient” or “not assessed” for the purposes of determining their conservation status, a number are indeed listed as “Endangered.” In our review of these assessments it has become abundantly clear that for many species the heightened level of threatened status is based not on a knowledge of their local abundance, population status, or habitat requirements, but solely on a formulaic interpretation of their geographical area of occurrence (IUCN 2016). This is problematic for several reasons inasmuch as it reduces confidence in the value of the IUCN assessments and throws into question the conservation value of secondary sources, negative data, and conclusions derived from the absence of substantive results (see comments in Brown et al. 2012, 2013), for instance, Ramphotyphlops suluensis, known only from two small islands in the Sulu Archipelago that have only once been surveyed (by Gaulke) in the last century since Taylor, Cerberus microlepis, known only from a single lake on the Bicol Peninsula of Luzon, or Lycodon chrysoprateros, a species originally believed to be restricted only to Dalupiri Island (Ota and Ross 1994). These species illustrate the challenge of drawing conclusions based on negative data. Elevated conservation threat levels inferred in all three cases have involved a primary justification derived from presumed range-restricted geography, which has yet to be assessed empirically (see comments by McLeod et al. 2013; Diesmos et al. 2014; Sanguila et al. 2016). Such inferences, based on negative data, are not conclusive, defensible interpretations of the extent of a species’ geographic occurrence data. To make matters worse, recent systematic studies have seriously questioned the validity of C. microlepis and L. chrysoprateros (Alfaro et al. 2004; Siler et al. 2013), which identifies an even more alarming pattern to conservation status assessments: poorly known species (those encountered once or a few times) tend to end up in elevated threat categories (IUCN 2017). In these instances, we recommend converting such species to “Data Deficient” to flag them, and to draw the attention of future researchers to these gaps in our collective knowledge. They need to be studied inasmuch as there have been no actual new data pertaining to these species for more than 100 years. How can they be anything other than “Data Deficient?”

Distribution maps and photographs of living snake specimens referenced in the species accounts, are incorporated into the Appendix that follows the Bibliography References section.

In closing, we wish to emphasize that we have prepared this historical overview covering the period from the late 18th Century into the early 21st Century to provide an updated foundation upon which our international colleagues, and especially the scientific community in the Philippines, will build. It is our hope that our compilation of Philippine species distributions and taxonomic status, will stimulate future research on poorly-known taxa, snake communities from unexplored areas, natural history studies and, ultimately, hopefully result in biologically meaningful, data-informed conservation assessments.

**MUSEUM SYMBOLIC CODES**

The following symbolic codes are used to designate museums that hold type materials of snake species that have been reported from the Philippines.

**BMNH** Natural History Museum, London [formerly British Museum (Natural History)] (London, England)
**CAS** California Academy of Sciences (San Francisco, California, USA)
**CAS-SU** Stanford University collection at the California Academy of Sciences (CAS).
**CM** Carnegie Museum (Pittsburgh, Pennsylvania, USA)
**CNHM** Chicago Natural History Museum [see FMNH]
**EHT** Edward Harrison Taylor [field numbers]; now at CAS, CM, and KU
**FMNH** Field Museum of Natural History (Chicago, Illinois, USA)
**KU** University of Kansas Biodiversity Institute [formerly Museum of Natural History] (Lawrence, Kansas, USA)
ACKNOWLEDGMENTS

This report is an outgrowth of many decades of activity on the part of the authors, their institutions, their collaborators, and students. For Philippine snake-specific insight, we thank A.C. Alcala (Silliman University), A.C. Diesmos (PNM), M. Gaulke (GeoBio Center LMU, Germany), and the late W.C. Brown (Menlo College, California), and R.V. Sison (PNM) — all of whom have provided years of collaboration, many discussions, advice, and support. We are grateful to curators and staff at institutions housing critical Philippine snake collections, including G. Zug, R. Crombie, K. de Queiroz, A. Wynn, and the late D. Cochran and J. Peters (USNM), R. Inger, H. Voris, H. Marx, A. Resetar (FMNH), J. Rosado, J. Hanken, L. Ford, and the late A. Loveridge, E. Williams (MCZ), S. Rogers, and the late J. McCoy (CM), T. LaDuc, D. Cannatella (TNHC), A. Grandison, E.N. Arnold (BMNH), I. Ineich, and the late J. Guibé (MNHM), J. Vindum, R. Drewes, M. Koo, and L. Scheinberg (CAS), J. Watters (OU), D. Blackburn (UF), and L. Welton (KM). We deeply appreciate and thank A.C. Diesmos, J.B. Fernandez, V. Garcia, K. Hesed, N.A. Huron, L. Soriano, J. Tashjian, and H. Voris for the use of their photographs. We thank K. Allen, M. Sanguila, N. Huron, J. Watters, C. Linkem, and M. Koo for assistance with data, georeferencing, and maps, and our families for their unwavering support. We thank the Philippine-American Education Foundation (PAEF) for its continued support of student research initiatives.

Philippine field work has been supported by a U.S. National Science Foundation (NSF) grant to W.C. Brown and verification and rectification of CAS specimen-associated data was supported by NSF funds to AEL and J. Vindum. Recent field work (2005–2017) has been supported by NSF grants to RMB (DEB 073199, 0743491, 0910341, 1418895, and 1655553) and CDS (IOS 1353683, DEB 0804115) and Fulbright and Fulbright-Hayes fellowships to CDS.

We deeply appreciate the critical reviews of the manuscript provided by both Drs. Aaron Bauer and George Zug that led to significant improvements of the presentation. Nonetheless, though we accepted most of their suggestions, we are still responsible for errors of omission and commission.
The unpatterned orange morph of Philippine Boiga cynodon photographed in 2016 in the University of the Philippines at Los Baños Quezon Land Grant Forest Reserve, Municipality of Siliolan, Quezon Province, southeastern Luzon Island.

Photo: Rafe M. Brown.
Synopsis of the Snakes of the Philippines

A Checklist
Reference map illustrating the major Philippine faunal regions as defined by the Pleistocene Aggregate Island Complexes (PAICs). Selected island groups, such as the Babuyans, Batanes, the Romblon Island Group (RIG), and the Sulu Archipelago, are also indicated.
Class Reptilia, Order Squamata, Suborder Serpentes

Superfamily Typhlopoidea (Scolecophidia)

Family Gerrhopilidae Vidal, Marin, Morini, Donnellan, Branch, Thomas, Vences, Wynn, Cruaud, and Hedges 2010

Gerrhopilus hedraeus (Savage, 1950)
Negros Island Blind Snake


**TYPE LOCALITY AND TYPE SPECIMEN(s).**— At about 1500 feet above Luzuriaga, 6 mi SW of Dumaguete, Oriental Negros Prov., Negros Id., Philippines. Holotype: CAS-Su (Rept.) 12346.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 14D [p. 125]).— Bohol, Cebu, Marinduque, Mindanao, Mindoro, Negros, Pacijan, Tablas.

**CONSERVATION STATUS [IUCN]**.— Data Deficient [2016] ver. 3.1.

Gerrhopilus manilae (Taylor, 1919)
Manila Blind Snake

Typhlops manilae Taylor, 1919:106; 1922a:56.— McDiarmid, Campbell, and Touré, 1999:110.

Malayotyphlops manilae, Hedges, Marion, Lipp, Marin, and Vidal, 2014:38.


**TYPE LOCALITY AND TYPE SPECIMEN(s).**— “from type, an unnumbered specimen in Santo Tomas Museum, labeled ‘Filipinas;’ locality and collector unknown; probably from Luzon.” (Taylor [1919:105]). Holotype: STUM unnumbered.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 15A [p. 126]).— Luzon.

**REMARKS.**— See remarks in Pyron and Wallach (2014:44) relating to the transfer of Typhlops (also as Malayotyphlops) manilae to the genus Gerrhopilus.

**CONSERVATION STATUS [IUCN]**.— Data Deficient [2016] ver. 3.1 (listed under Typhlops manilae).

Family Typhlopidae Merrem, 1820

Subfamily Asiatyphlopinae Hedges, Marion, Lipp, Marin, and Vidal, 2014

Acutotyphlops banaorum Wallach, Brown (RM), Diesmos, and Gee, 2007 Photo figure 1
Balbalan Blind Snake


**TYPE LOCALITY AND TYPE SPECIMEN(s).**— Philippines, near Barangay Balbalasang, Municipality of Balbalan, Kalinga Province, Luzon Id., Philippines. Holotype: PNM 9280.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 2B [p. 113]).— Luzon (Prov.: Kalinga [known only from the type locality]).

**CONSERVATION STATUS [IUCN]**.— Data Deficient [2016] ver. 3.1.
**Indotyphlops braminus** (Daudin, 1803)  
Common Blind Snake; Brahminy Blind Snake

*Eryx braminus* Daudin, 1803, 7:279.  
*Typhlops braminus*, Cuvier, 1829, 2:406.— Taylor, 1922a:50, fig. 2; 1922d:136; 1923:542.  
*Indotyphlops braminus*, Hedges, Marion, Lipp, Marin, and Vidal, 2014:37.

**Type Locality and Type Specimen(s).**— Vizagapatam [= Vishakhapatnam], India (see comments in McDiarmid, Campbell, and Touré [1999:59], also Bauer [2015:42]). Type based on pl. 43 (“Rondoo Talooloo Pam”) in Russell (1796:48) (*fide* McDiarmid et al., op. cit.; see also Bauer, op. cit.).

**Philippine Distribution (Map 19C [p. 130]).**— (widely distributed) Babuyan Ids. (Camiguin Norte, Dalupiri), Basilan, Batanes Ids. (Batan, Ivojos), Bohol, Busuanga, Calamian Ids. (Caluit), Camiguin Sur, Cebu, Guimaras (also Panubolon Id.), Luzon (Prov.: Albay, Bataan, Batangas, Cavite, Ilocos Norte, Kalinga, Laguna, Manila, Quezon, Rizal, Sorsogon, Zambales), Mindanao (Prov.: Bukidnon, Lanao del Norte, Sarangani, Zamboanga del Norte), Marinduque, Masbate, Mindoro, Negros (Prov.: Negros Occidental, Negros Oriental), Palawan, Panay (Prov.: Aklan, Antique, Iloilo; also Ids.: Borocay, Giganes Sur, Semirara, Sibay), Polillo, Samar, Sibuyan, Sulu Archipelago (Jolo [*fide* Taylor [1923:542]), Tablas.

**General Distribution (Other than Philippines).**— Widely distributed throughout Southeast and Southwest Asia, Africa, and elsewhere (see McDiarmid et al. [1999:61]), Wallach [2009:34 et seq.], Wallach et al. [2014:614].

**Conservation Status [IUCN].**— The conservation status of *Indotyphlops braminus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life* as *Ramphotyphlops braminus*.

**Malayotyphlops andyi** Wynn, Diesmos, and Brown (RM), 2016

Andy’s Blind Snake

*Malayotyphlops andyi* Wynn, Diesmos, and Brown, 2016:164, figs. 1 [map], 5.

**Type Locality and Type Specimen(s).**— Nassiping Reforestation Project area, Barangay Nassiping, Sierra Madre Mt. Range, Municipality of Gattaran, Cagayan Prov., Luzon Id., Philippines. Holotype: PNM 9779).

**Philippine Distribution (Endemic) (Map 23D [p. 134]).**— Luzon (Prov.: Cagayan).

**Conservation Status [IUCN].**— The conservation status of *Malayotyphlops andyi* has not been
assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life.

**Malayotyphlops canlaonensis** (Taylor, 1917)
Taylor’s Worm Snake; Taylor’s Blind Snake


**Type locality and type specimen(s).** — Type locality: Canlaon Volcano at ~ 750 m, Negros Id., Philippines. Holotype: CM 2666.

**Philippine distribution (Endemic)** (Map 24A [p. 135]). — Negros (Prov.: Negros Occidental [Canlaon Volcano]).

**Conservation status [IUCN].** — Data Deficient [2016] ver. 3.1.

**Malayotyphlops castanotus** (Wynn and Leviton, 1993)
Brown-bellied Blind Snake; Western Visayan Blind Snake


**Type locality and type specimen(s).** — 8 km W of Pulupandan, Inampulugan Id., Guimares Prov., Philippines. Holotype: CAS-Su (Rept.) 27940.

**Philippine distribution (Endemic)** (Map 24B [p. 135]). — Boracay Id. (Prov.: Aklan), Inampulugan (Guimares Prov.), Negros (Prov.: Negros Occidental, Negros Oriental), Panay (Prov.: Aklan [northern coast], Antique).

**Conservation status [IUCN].** — The conservation status of *Malayotyphlops castanotus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life.

**Malayotyphlops collaris** (Wynn and Leviton, 1993)
Light-collared Blind Snake


**Type locality and type specimen(s).** — Mt. Anuling, Caramoan Municipality, Camarines Sur Prov., Luzon Id., Philippines. Holotype: UF 55123.

**Philippine distribution (Endemic)** (Map 24C [p. 135]). — Luzon (Prov.: Camarines Sur [eastern tip of Caramoan Peninsula at 150–250 m elevation]).

**Conservation status [IUCN].** — Data Deficient [2016] ver. 3.1.

**Malayotyphlops denrorum** Wynn, Diesmos, and Brown (RM), 2016
Sierra Madre Blind Snake

*Malayotyphlops denrorum* Wynn, Diesmos, and Brown, 2016:163, figs. 1 [map], 4.

**Type locality and type specimen(s).** — Sitio Apaya, Barangay Dibulan, Apaya Creek area, Sierra Madre Mt. Range, San Mariano Municipality, Isabela Prov., Luzon Id., Philippines. Holotype: PNM 9813.

**Philippine distribution (Endemic)** (Map 24D [p. 135]). — Luzon (Prov.: Isabela).
CONSERVATION STATUS [IUCN].— The conservation status of *Malayotyphlops denrorum* has not been assessed for the IUCN Red List [2016] ver. 3.1.

*Malayotyphlops hypogius* (Savage, 1950)
Cebu Blind Snake


*Malayotyphlops hypogius*, Hedges, Marion, Lipp, and Vidal, 2014:38.— Supsup, Puna, Asis, Redoblado, Panaguinit, Guinto, Rico, Diesmos, Brown, and Mallari, 2016:170, fig. 36.

**Type locality and type specimen(s).**— Cebu, Philippines. Holotype: CAS-SU (Rept.) 12347.

**Philippine distribution (endemic)** (Map 25A [p. 136]).— Cebu, Panay (identification with hesitation by Ferner et al. [2001:54{21}]).— Cebu, Panay (identification with hesitation by Ferner et al. [2001:54{21}]).

**Remarks.**— See comments under *M. luzonensis*.

**Conservation status [IUCN].**— Data Deficient [2016] ver. 3.1.

*Malayotyphlops luzonensis* (Taylor, 1919)
Luzon Worm Snake; Luzon Blind Snake


*Malayotyphlops luzonensis*, Hedges, Marion, Lipp, Marin, and Vidal, 2014:38.— Wynn, Diesmos, and Brown, 2016:161, figs. 1 [map], 3.— Supsup, Puna, Asis, Redoblado, Panaguinit, Guinto, Rico, Diesmos, Brown, and Mallari, 2016:170.

**Type locality and type specimen(s).**— Mt. Makiling, Laguna Prov., Luzon Id., Philippines. Holotype: CM 2653.

**Philippine distribution (endemic)** (Map 25B [p. 136]).— Babuyan Claro, Camiguin Norte, Cebu, Luzon (Prov.: Aurora, Laguna), Marinduque, Masbate, Negros (Prov.: Negros Occidental), Pacijan, Poro, Semirara, Siquijor.

**Remarks.**— See discussion in Supsup et al. (2016:170) relating to the identity of *Malayotyphlops* populations inhabiting the Visayan Island complexes and Luzon (including *M. luzonensis*, *M. ruber*, and *M. hypogius*), also comments by Sanguila et al. (2016:107) regarding specimens of *Malayotyphlops* sp. (cf. “luzonensis”) from the Mindanao faunal region.

**Conservation status [IUCN].**— Data Deficient [2016] ver. 3.1.

*Malayotyphlops ruber* (Boettger, 1897)
Samar Blind Snake


*Malayotyphlops ruber*, Hedges, Marion, Lipp, Marin, and Vidal, 2014:38.— Wynn, Diesmos, and Brown, 2016:162, figs. 1 [map], 2.

**Type locality and type specimen(s).**— Samar Id., Philippines. Holotype: SMF 16616.

**Philippine distribution (endemic)** (Map 25C [p. 136]).— Samar.

**Remarks.**— See comments under *M. luzonensis*.

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.
**Malayotyphlops ruficaudus** (Gray, 1845)  
Red-tailed Worm Snake; Red-tailed Blind Snake

*Anilogus ruficauda* Gray, 1845:136.
*Typhlops petersi* Steindachner, 1867:515, pl. 13, figs. 7–9 (type locality: “Philippinen”).
*Typhlops ruficauda*, Taylor, 1922a:54.
*Malayotyphlops ruficauda*, Hedges, Marion, Lipp, Marin, and Vidal, 2014:38.

**TYPE LOCALITY AND TYPE SPECIMEN (S)**.—“Philippines” Syntypes (3): BMNH 1946.1.11.4–1946.1.11.6.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 25D [p. 136]).—Babuyan Ids. (Camiguin Norte), Luzon (Prov.: Bulacan, Camarines Sur, Isabela, Laguna, Manila, Zambales), Marinduque, Negros, Sibuyan, Tablas.

**CONSERVATION STATUS [IUCN]**.—Data Deficient [2016] ver. 3.1.

---

**Ramphotyphlops cuminigii** (Gray, 1845)  
Cuming’s Worm Snake; Cuming’s Blind Snake

*Onychophis Cuminigii* Gray, 1845:133.
*Typhlops longicauda* Taylor 1919:108; 1922a:63, pl. 1, figs. 1a–c (type locality: Bunawan, Agusan Prov., Mindanao).
*Typhlops cuminigii*, Taylor, 1922a:66, figs. 4a–c; 1922b:196.
*Typhlops dendrophis* Taylor, 1922a:60 (type locality: Bunawan, Agusan Prov., Mindanao).
*Ramphotyphlops cf. cuminigii*, Sanguila, Cobb, Siler, Diesmos Alcala, and Brown, 2016:106.

**TYPE LOCALITY AND TYPE SPECIMEN (S)**.—“Philippines” and “Indian Ocean” Syntypes (3) BMNH 1946.1.11.19–20, 1946.1.10.83.

**PHILIPPINE DISTRIBUTION** (Map 32C [p. 143]).—Bohol, Cebu, Marinduque, Masbate, Mindanao (Prov.: Davao Oriental), Negros (Prov.: Negros Occidental, Negros Oriental), Polillo, Sibuyan, Sicogon.

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES)**.—One of the syntypes, without locality, and according to Boulenger (1893, 1:51) collected by Sir. E. Belcher, is listed by McDiarmid et al. (1999:63) as “Indian Ocean” (“... obviously in reference to an island in the Indian Ocean.”). Except for this doubtful record, this species is known only from the Philippines.

**CONSERVATION STATUS [IUCN]**.—Data Deficient [2016] ver. 3.1.
**Ramphotyphlops marxi** (Wallach, 1993)
Marx’s Worm Snake; Marx’s Blind Snake


**Type locality and type specimen(s).**— Tarabucan (12°13ʹN, 124°35ʹE), four miles SE of spur of Sigarag Mountains, Matuguinao Municipality, northern Western Samar Prov., Samar Id., Philippines. Holotype: FMNH 96520.

**Philippine distribution (endemic)** (Map 32D [p. 143]).— Samar (known only from the type locality).

**Conservation status [IUCN].**— Data Deficient [2016] ver. 3.1.

**Ramphotyphlops olivaceus** (Gray, 1845)
Olive-colored Blind Snake

*Onychophis olivaceus* Gray, 1845:133.
*Typhlops olivaceus*, Taylor, 1922a:58 (no Philippine records).

**Type locality and type specimen(s).**— “Philippines”. Holotype: BMNH 1946.1.10.57.

**Philippine distribution.**— Basilan, Samar, Sulu Archipelago (Bubuan, Sibutu).

**General distribution (other than Philippines)** (Map 33A [p. 144]).— Indonesia (Ambon, Borneo, Ceram [Seram], Mysool, Sangihe Ids., Sulawesi); Malaysia (Sarawak); (?) British Solomon Ids. [Barbour, 1914]).

**Conservation status [IUCN].**— The conservation status of *Ramphotyphlops olivaceus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life.

**Ramphotyphlops suluensis** (Taylor, 1918)
Sulu Islands Worm Snake

*Typhlops suluensis* Taylor, 1918a:257–259, 265; 1922a:61, fig. 3a–c; 1922b:196.

**Type locality and type specimen(s).**— Bubuan Id., Sulu Archipelago, Philippines. Holotype: PNM 2001 (type destroyed during WW II).

**Philippine distribution (endemic)** (Map 33B [p. 144]).— Basilan, Sulu Archipelago (Bubuan, Sibutu).

**Remarks.**— Treated as a synonym of *R. olivaceus* by McDowell (1974:43) and McDiarmid et al. (1999:71).

**Conservation status [IUCN].**— Endangered B1ab(iii) [2016] ver. 3.1.

**Superfamily Pythonoidea**

**Family Pythonidae** Fitzinger, 1843

**Malayopython reticulatus** (Schneider, 1801)  
*Photo figure 8*
Reticulated Python

*Boa reticulata* Schneider, 1801:264.


**TYPE LOCALITY AND TYPE SPECIMEN(S).**— locality of type specimen not given, restricted to ‘Java’ by Brongersma (1972:58). Neotype: ZFMK 32378; type locality “Rengit, West Malaysia” (fide Auliya et al. [206–207]; see also Wallach et al. [2014:610]).

**PHILIPPINE DISTRIBUTION** (Map 23C [p. 134]).— (widely distributed) Babuyan Ids. (Cagayan, Dalupiri), Basilan, Bohol, Calamian Ids. (Calauit), Catanduanes, Cebu, Leyte, Lubang, Luzon (Prov.: Aurora, Ilocos Norte, Isabela, Laguna, Quezon, Sorsogon, Zam-bales), Marinduque, Masbate, Mindanao (Prov.: Agusan del Norte, Sarangani, South Cotabato, Zamboanga del Sur [Zamboanga City]), Mindoro (Occidental, Oriental), Negros, Palawan, Panay, Polillo, Samar, Siargao, Siquijor, Sulu Archipelago (Bongao, Jolo, Siasi, Sibutu, Tawi-Tawi), Tablas.

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).**— Widely distributed (see Wallach et al. [2014:610]).

**CONSERVATION STATUS [IUCN].**— The conservation status of Malayopython reticulatus has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life as Malayopython reticulatus reticulatus (Schneider, 1801).

**Family Xenopeltidae Bonaparte, 1845**

Xenopeltis unicolor Reinwardt in F. Boie, 1827

Iridescent Earth Snake; [Asian]Sunbeam Snake


**TYPE LOCALITY AND TYPE SPECIMEN(S).**— Java, Indonesia. Type unknown.

**PHILIPPINE DISTRIBUTION.**— Balabac, Palawan, Sulu Archipelago (Bongao, Jolo, Sanga-Sanga).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES)** (Map 37D [p. 148--1--]).— Southeast Asia from Myanmar to Vietnam and south through Malaysian Peninsula and Malaysian Sarawak to western Indonesia (Borneo, Java, Sulawesi, Sumatra). (See McDiarmid et al. [1999] and Wallach et al. [2014] for details.)

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.
Superfamily Acrochordoidea

Family Acrochordidae Jan, 1863

*Acrochordus granulatus* (Schneider, 1799)  
Photo figures 9–11

Marine File Snake; Little File Snake; Wart Snake

*Hydrus granulatus* Schneider, 1799:243.


*Chersydrus granulatus* Gray, 1849:61.— Taylor, 1922a:77, pl. 3, fig. 1; 1922d:136.  
*Chersydrus granulatus luzonensis* Loveridge, 1938:209.

Type locality and type specimen(s).— India (restricted by Smith [1943:134]). Type un-known.

Philippine distribution (Map 2A [p. 113]).— Bantayan, Calamian Ids. (Calauit), Cebu, Guimaras, Luzon (Prov.: Batangas, Cavite, Ilocos Norte, Laguna, Manila, [Manila Bay], Quezon, Rizal), Masbate, Negros (Prov.: Negros Occidental, Negros Oriental), Palawan, Panay (Prov.: Iloilo), Siargao.

General distribution (other than Philippines).— Coastal waters from west coast of India (as far north as Bombay), Sri Lanka, east coast of India, coasts of Myanmar, Malaysia, and east throught the Indonesian Archipelago to the north coast of Australia and the Solomon Islands.

Conservation status [IUCN].— Least Concern [2016] ver. 3.1.

Superfamily Colubroidea

Family Pareidae Romer, 1956

*Aplopeltura boa* (H. Boie in F. Boie, 1828)  
Photo figure 12

Blunt-headed Tree Snake; Blunt-headed Slug Snake

*Amblycephalus boa* H. Boie in F. Boie, 1828:1034.


*Haplopeltura boa*, Boettger, 1892:134.— Taylor, 1922a:281, pl. 34, figs. 7–9.

Type locality and type specimen(s).— Parang, western Java, Indonesia. Holotype: RMNH 984.

Philippine distribution (Map 3B [p. 114]).— Balabac, Bohol, Basilan, Dinagat, Leyte, Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Davao City, Davao Oriental, Misamis Oriental, South Cotabato, Zamboanga del Sur [Zamboanga City]), Palawan, Samar (Prov.: Eastern, Western).

General distribution (other than Philippines).— Southeastern Asia, Myanmar, southern Thailand, West and East Malaysia, western Indonesia.
Remarks.—Reported for the first time from Luzon by Sy and Binaday (q.v., 2016) from a single observation (photo voucher). The species’ natural occurrence on Luzon is unlikely (the taxon is otherwise restricted to the Mindanao faunal region islands of Mindanao, Samar, Leyte, Bohol, etc), and photo vouchers are not always reliable, so we withhold judgment. However, we note that the Sy and Binaday (op. cit. supra) record comes from the extreme southern tip of the Bicol Peninsula, directly across from northern Samar Island, where the species has been documented. Therefore, the Sorsogon record is worth further investigation.

Conservation status [IUCN].—Least Concern [2016] ver. 3.1.

Additional references.—Guo et al., 2011.

Family Homalopsidae Bonaparte, 1845

**Cerberus microlepis** Boulenger, 1896

Lake Buhi Bockadam; Lake Buhi Dog-faced Water Snake

*Cerberus microlepis* Boulenger, 1896, 3:18.—Murphy, Voris, and Karns, 2012:13, figs. 6, 10.—Murphy and Voris, 2014:12, fig. 13.—Wallach, Williams, and Boundy, 2014:153.

*Hurria microlepis*, Taylor, 1922a:114, pl. 6, figs. 1–3; 1923:547.

Type locality and type specimen(s).—Philippines. Syntypes (2): BMNH 1946.1.7.24–25.

Philippine distribution (Endemic) (Map 9A [p. 120]).—Luzon (Bicol Peninsula [Camarines Sur Prov. {Lake Buhi}]).

Remarks.—Recent molecular studies by Alfaro et al. (2004) demonstrated that this species is nested within the Philippine *Cerberus schneiderii* complex and that it is scarcely 2% genetically different from nearby populations. However, as observed by Murphy, Voris, and Karns (2012:21), “*Cerberus microlepis* is geographically isolated, as well as ecologically and morphologically distinct and on its own evolutionary trajectory, suggesting it is more than an ecomorph.” They point out that in a followup discussion to their 2004 publication, Alfaro et al. (2008) suggested that “divergence of *C. microlepis* from its coastal ancestor is estimated at 2.0 MYA (1.0–3.1 MYA)” (Murphy, Voris, and Karns [2012:21]).

We accept the conclusions of Murphy et al. (2012) and recognize *C. microlepis* as a distinct species.

Conservation status [IUCN].—Endangered B1ab(iii,v) [2016] ver. 3.1.

N.B. Consideration of this taxon as “Endangered,” which appears to be based primarily, if not solely, on its known area of occurrence, is problematic for reasons noted above, especially given the lack of survey and inventory data from the surrounding region and/or other freshwater systems of the Bicol Peninsula.

**Cerberus schneiderii** (Schlegel, 1837)

Dog-faced Water Snake

*Homalopsis schneiderii* Schlegel, 1837b:341.

*Cerberus unicolor* Gray, 1849:65 (type locality: Philippines).


*Cerberus schneiderii*, Murphy, Voris, and Karns, 2012:17, figs. 8–9.—Brown, Siler, Oliveros, Wel-
**TYPE LOCALITY AND TYPE SPECIMEN(S).** — Timor, Indonesia. Lectotype: RMNH 1173 (designated by Murphy et al. [2012:18] [q.v.]).

**PHILIPPINE DISTRIBUTION** (Map 9B [p. 120]). — “Documented on most major islands of the Philippines . . .” (Brown et al. [2013:90]). Bantayan, Bohol, Catanduanes, Cebu, Cuyo, Dinagat, Luzon (Prov.: Cavite, Laguna, Manila, Rizal, Zambales), Masbate, Negros (Prov.: Negros Oriental), Palawan, Romblon, Panay (Prov.: Aklan, Antique, Capiz, Iloilo), Polillo, Siquijor, Sulu Archipelago (Jolo).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).** — Coasts of Indonesia, Malaysia, Singapore, Thailand. (See Murphy, Voris, and Karns [2012:17], Murphy and Voris [2014:13], and Wallach et al. [2014:153], for details.)

**REMARKS.** — See Murphy, Voris, and Karns (2012:17) for an extensive synonymy and discussion relating to the adoption of this new combination for what was formerly known in the Philippines as *Cerberus rhynchops* (see also pp. 14–17 for a discussion relating to the restriction of *Cerberus rhynchops* to the South Asian population [i.e., India, Thailand, and the Andaman and Nicobar Islands]).

**CONSERVATION STATUS [IUCN].** — Not distinguished from *C. rhynchops*, which is listed as of Least Concern [2016] ver. 3.1.

---

**Fordonia leucobalia** (Schlegel, 1837)

White-bellied [crab-eating] Water Snake

*Homalopsis leucobalia* Schlegel, 1837b:345, pl. 13, figs. 8–9.— Taylor, 1922a:115.


**TYPE LOCALITY AND TYPE SPECIMEN(S).** — Timor, Indonesia. Lectotype: RMNH 1161 (designated by Iskandar and Colijn [2001:92]).

**PHILIPPINE DISTRIBUTION.** — Mindanao (*fide* Wallach et al. [2014:293]).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).** — India (Bengal), Myanmar, Vietnam, Nicobar Ids., Malaysia, Singapore, Indonesia (Java, Sumatra, Timor) to northern Australia.

**REMARKS.** — Wallach et al. (2014:293) include Luzon in their distribution statement but we know of no confirmed record for its occurrence there.

**CONSERVATION STATUS [IUCN].** — Least Concern [2016] ver. 3.1.

---

**Gerarda prevostiana** (Eydoux and Gervais, 1837)

Gerard’s Water Snake

*Coluber (Homalopsis) prevostianus* Eydoux & Gervais, 1837:5, pl. 16, figs. 4–6.


*Gerarda prevostiana*, Cope, 1862:1.— Smith, 1943:394, figs. 125–126.— Murphy and Voris, 2014:20, fig. 27.— Wallach, Williams, and Boundy, 2014:301.


**PHILIPPINE DISTRIBUTION.** — Palawan.

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES)** (Map 14C [p. 125]). — India (Bombay and
Malabar regions), Sri Lanka, Myanmar (Gulf of Martaban), west coast of Malay Peninsula, East Malasya (Sarawak).

**REMARKS.**—Wallach et al. (2014:301) note that the “Original description reprinted in Eydoux & Gervais (1837b:7–72, pl. 30, figs. 4–6). Plates incorrectly labeled 15 in text (1837a:5) and 29 in text (1837b:70).”

That this species occurs in or near Manila, Luzon, is highly unlikely and the record for its occurrence there most probably originated by the syntypical specimens being shipped to the MNHN from the port of Manila.

**CONSERVATION STATUS [IUCN].**—Least Concern [2016] ver. 3.1.

### Family Colubridae Oppel, 1811

#### Subfamily Ahaetullinae Figueroa, McKelvy, Grismer, Bell, and Lalivaux, 2016

**Ahaetulla prasina prasina** (Reinwardt in F. Boie, 1827)

Green Vine Snake; Oriental Whipsnake; Gunther’s Whip Snake


*Ahaetulla prasina prasina*, Leviton, 1968:81, fig. 1.—Gaulke, 1999:278.

**TYPE LOCALITY AND TYPE SPECIMEN(S).**—Java, Indonesia. Syntypes (2):RMNH 782 (now RMNH 782 and 47582 [*fide* Wallach et al. [2014:20]).

**PHILIPPINE DISTRIBUTION** (Map 2C [p. 113]).—Balabac, Busuanga, Calamian Isds. (Calauit Id.), Coron, Culion, Palawan.

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).**—Indonesia: Borneo (Kalimantan), Riau (also as Riou); East Malaysia: (Borneo [Sabah, Sarawak]), West Malaysia (Malay Peninsula); Singapore.

**CONSERVATION STATUS [IUCN].**—Least Concern [2016] ver. 3.1.

**Ahaetulla prasina preocularis** (Taylor, 1922)

*Photo figures 14–16*

Philippine Vine Snake

*Dryophis preocularis* Taylor, 1922a:222, text-fig. 19a–b, pl. 28; 1922d:138.


**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 2D [p. 113]).—Babuyan Ids. (Camiguin Norte), Basilan, Batanes Ids. (Batan, Sabtang), Bohol, Camiguin Sur, Cebu, Dinagat, Jolo, Leyte,

CONSERVATION STATUS [IUCN].— Not distinguished from A. prasina, which is listed as of Least Concern [2016] ver. 3.1.

*Chrysopelea paradisi variabilis* Mertens, 1968
Paradise Tree Snake

**Type locality and type specimen(s).**— Samar, Philippines. Holotype: SMF 20281.

**Philippine distribution (endemic)** (Map 9D [p. 120]).— Babuyan Ids. (Calayan, Dalupiri), Balabac, Bantayan, Banton, Basilan, Camiguin, Cebu, Dinagat, Kalotkot, Leyte, Luzon (Prov.: Bataan, Batangas, Bulacan, Cavite, Laguna, Quezon, Rizal, Sorsogon, Zambales), Marongas, Masbate, Medis, Mindanao (Prov.: Agusan del Norte, Zamboanga del Sur [Zamboanga City]), Mindoro, Negros (Prov.: Negros Oriental), Palawan, Panay (Prov.: Aklan, Antique, Iloilo), Polillo, Romblon, Samar, Siargao, Sibuyan, Siquijor, Sulu Archipelago (Bongao, Bubuan, Jolo, Sanga-Sanga, Tawi-Tawi), Tablas.

**Conservation status [IUCN].**— The conservation status of *Chrysopelea paradisi variabilis* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

**Dendrelaphis flavescens** Gaulke, 1994

Sulu Islands Tree Snake

*Dendrelaphis caudolineatus flavescens* Gaulke, 1994b:138, fig. 2.

*Dendrelaphis flavescens*, van Rooijen and Vogel, 2012:11, fig. 6.— Wallach, Williams, and Boundy, 2014:214.

**Type locality and type specimen(s).**— Sanga-Sanga Id., Sulu Archipelago, Philippines. Holotype: SMF 74846.

**Philippine distribution (endemic)** (Map 12A [p. 123]).— Sulu Archipelago (Bongao, Bubuan, Sanga-Sanga, Tawi-Tawi) (*fide* van Rooijen and Vogel [2012:11–12]).

**Remarks.**— Wallach, Williams, and Boundy (2014:214) also list in their distribution statement, but without support, “Sitanki”, which may refer to Sitangkai, an islet in close proximity to Tawi-Tawi.

**Conservation status [IUCN].**— The conservation status of *Dendrelaphis flavescens* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

**Dendrelaphis fuliginosus** Griffin, 1909

Philippine Lamp-black Tree Snake

*Dendrelaphis fuliginosus* Griffin, 1909:55; 1911:261.— Taylor, 1922a:172 (as doubtful synonym of *D. modestus*).— van Rooijen and Vogel, 2012:12, figs. 7–8.— Wallach, Williams, and Boundy, 2014:214.


**Type locality and type specimen(s).**— Negros Id., Philippines. Neotype: FMNH 67409 (see van Rooijen and Vogel [2012:12]).

**Philippine distribution (endemic)** (Map 12B [p. 123]).— Cebu, Masbate, Mindoro, Negros, Panay (*fide* van Rooijen and Vogel [2012:12–13]).

**Conservation status [IUCN].**— The conservation status of *Dendrelaphis fuliginosus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

**Dendrelaphis levitoni** van Rooijen and Vogel, 2012

Leviton’s Bronze-back Tree Snake

*Dendrelaphis levitoni* van Rooijen and Vogel, 2012:13, fig. 9.— Wallach, Williams, and Boundy, 2014:215.
**Type locality and type specimen(s).—** Puerto Princesa, Palawan Id., Philippines. Holotype: CAS 15803.

**Philippine distribution (endemic)** (Map 12C [p. 123]).— Balabac, Candaraman, Palawan (fide van Rooijen and Vogel [2012:13–14]).

**Conservation status [IUCN].—** The conservation status of *Dendrelaphis levitoni* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

*Dendrelaphis luzonensis* Leviton, 1961

Luzon Bronze-back Tree Snake


**Type locality and type specimen(s).—** Los Bãnos, Laguna Prov., Luzon Id., Philippines. Holotype: CAS 61134.

**Philippine distribution (endemic)** (Map 12D [p. 123]).— Babayan Ids. (Calayan, Camiguin Norte, Dalupiri), Luzon (Prov.: Albay, Aurora, Baay, Batangas, Bulacan, Cagayan, Isabela, Camarines Norte, Camarines Sur, Ilocos Norte, Kalinga, Laguna, Pangasinan, Quezon, Rizal, Zambales), Marinduque, Masbate (?), Ticao (?).

**Conservation status [IUCN].—** The conservation status of *Dendrelaphis luzonensis* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

*Dendrelaphis marenae* Vogel and van Rooijen, 2008

Gaulke’s Bronze-back Tree Snake


**Type locality and type specimen(s).—** Albay Prov., Luzon Id., Philippines. Holotype: MNHN 1994.059.

**Philippine distribution** (Map 13A [p. 124]).— Balabac, Bantayan, Basilan, Bohol, Busuanga, Calauit, Camiguin, Candaraman, Carabao, Catanduanes, Cebu, Cibil, Guimaras, Kalotkot, Leyte, Luzon (Prov.: Albay, Aurora, Batangas, Cagayan, Isabela, Camarines
Norte, Camarines Sur, Ilocos Norte, Laguna, Manila, Nueva Vizcaya, Quezon, Sorsogon, Zambales), Marinduque, Masbate, Mindanao (Prov.: Agusan del Sur, Bukidnon, Davao, Davao Oriental, Lanao, Misamis Oriental, Zamboanga), Mindoro, Negros (Prov.: Negros Occidental, Negros Oriental), Palawan, Panay (Prov.: Aklan, Antique, Capiz, Iloilo), Polillo, Samar, Siargao, Siquijor, Surigao, Sulu Archipelago (Bongao, Cagayan Sulu, Jolo), Tablas. (After Vogel and van Rooijen [2008:20]; stated as based on Leviton [1968]; additional locations based on Siler et al. [2012], and Brown et al. [2013].)

**General distribution (other than Philippines).**— Indonesia (Sulawesi).

**Conservation status [IUCN].**— The conservation status of *Dendrelaphis marenae* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

### Dendrelaphis philippinensis Günther, 1879

Philippine Bronze-back Tree Snake


*Dendrelaphis terrificus*, Taylor, 1922a:174, pl. 23.


*Dendrelaphis philippinensis*, Sanguila, Cobb, Siler, Diesmos Alcala, and Brown, 2016:93.

**Type locality and type specimen(s).**— northern Mindanao Id., Philippines. Holotype: BMNH 1946.1.6.69 (formerly BMNH 1877.10.9.62).

**Philippine distribution (endemic) (Map 13B [p. 124]).**— Basilan, Bohol, Camiguin Sur, Catanduanes, Cebu, Dinagat, Kalotkot, Leyte, Luzon (Prov.: Albay [southern], Camarines Sur, Sorsogon), Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Bukidnon, Cotabato, Davao, Davao del Sur, Lanao del Norte, Lanao del Sur, Misamis Occidental, Maguindanao, Sultan Kudarat, South Cotabato, Zamboange del Norte, Zamboanga de Sur), Polillo, Samar, Siargao, Siquijor. (After van Rooijen and Vogel, 2012:19; details for Mindanao modified from details provided by Leviton [1968], Ferner et al. [2001], Gaulke [2001], David et al. [2006], Sanguila et al. [2016].)

**Remarks.**— Van Wallach et al. (2014:216) include Camiguin, Dinagat, Kalotkot, Samar, Siquijor, and Surigao in their distribution statement for this species and attribute the distribution to van Rooijen and Vogel (2012). Curiously, van Rooijen and Vogel do not include Samar or Kalotkot in their distribution statement for the species on page 19 but do so in the discussion on page 21. Otherwise, no where in their paper do they include Camiguin, Dinagat, Siquijor, and Surigao in their distribution statement for *D. philippinensis* (see van Rooijen and Vogel [2012:19, 21]).

**Conservation status [IUCN].**— The conservation status of *Dendrelaphis philippinensis* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

### Dryophiops philippina Boulenger, 1896

Philippine Keeled-bellied Whip Snake

*Dryophiops philippina* Boulenger, 1896:195, pl. 9, fig. 2.— Taylor, 1922a:213, pl. 6, figs. 4–6;
Type locality and type specimen(s).— Cape Engaño, Cagayan Prov., Luzon Id. (by subsequent selection by Leviton [1964c:142]). Lectotype: BMNH 1946.1.8.7, designated by Leviton (1964c:142).

Philippine distribution (Endemic) (Map 13D [p. 124]).— Luzon (Prov.: Bataan, Batangas, Bulacan, Cagayan, Laguna, Nueva Vizcaya, Rizal, Subic Bay, Zambales), Marinduque, Mindanao (Prov.: Davao del Sur [Mt. Talomo], Zamboanga del Sur [Zamboanga City]), Mindoro, Negros (Prov.: Negros Occidental, Negros Oriental), Panay (Prov.: Aklan, Antique), Romblon, Sibuyan, Siquijor, (?) Samar.

Conservation status [IUCN].— Vulnerable A4c [2016] ver. 3.1.

Dryophiops rubescens (Gray, 1834)

*Dipsas rubescens* Gray, 1834:pl. 84, fig. 2.


Type locality and type specimen(s).— “Malay Peninsula ?” (see Boulenger [1896:194]). Holotype: BMNH 1946.1.9.62.


General distribution (other than Philippines).— Western Indonesia, Western Malaysia, Singapore, Thailand Peninsula.

Conservation status [IUCN].— Least Concern [2016] ver. 3.1.

Subfamily Calamarinae Bonaparte, 1838

Calamaria bitorques Peters, 1872
Banded Reed Snake


Type locality and type specimen(s).— Luzon Id., Philippines. Holotype: ZMB 7444.

Philippine distribution (Endemic) (Map 5C [p. 116]).— Luzon (Prov.: Aurora, Cagayan, Camarines Sur, Ifugao, Isabela, Kalinga, Nueva Vizcaya, Quezon, Rizal, Sorsogon), Panay (Prov.: Aklan).

Remarks.— A single specimen from Sablayan, Mindoro, in the KU collections is most likely a new species, though closely related to *C. bitorques*.

Conservation status [IUCN].— Least Concern [2016] ver. 3.1.
Calamaria gervaisii Duméril, Bibron, and Duméril, 1854

**Remarks.**—The C. gervaisi group of subspecies is in serious need of review. Three of the nominal taxa conform to biogeographic/faunal regions, notably C. *g. hollandi*, C. *g. iridiscens*, and C. *g. gervaisii*, but the status of C. *g. polillensis* is in doubt.

**Conservation Status [IUCN].**—Least Concern [2016] ver. 3.1.

Calamaria gervaisii hollandi Taylor, 1923

*Holland’s Reed Snake*


**Type locality and type specimen(s).**—Port Holland, Basilan Id., Philippines. Holotype: CAS 60471 (formerly EHT 1255).

**Philippine distribution (endemic)** (Map 6A [p. 117]).—Basilan, Mindanao (Prov.: Agusan del Norte, Bukidnon, Davao City, Davao del Norte, Lanao, Maguindanao, Misamis Oriental, Zamboanga City).

**Conservation status [IUCN].**—Only reported as C. *gervaisi*, Least Concern [2016] ver. 3.1.
Calamaria gervaisii iridescens Taylor, 1917
Visayan Reed Snake


Calamaria gervaisii iridescens Taylor, 1917:360; 1922a:188.

**Type locality and type specimen(s).**— Canlaon Volcano, Negros Occidental Prov., Negros Id., Philippines. Holotype: CM [not confirmed].

**Philippine distribution (endemic)** (Map 6B [p. 117]).— Cebu, Masbate, Negros (Prov.: Negros Occidental, Negros Oriental), Panay (Prov.: Iloilo), Romblon Id. Group (? Carabao).

**Conservation status [IUCN].**— Only reported as C. gervaisi, Least Concern [2016] ver. 3.1.

Calamaria gervaisii polillensis Taylor, 1923
Polillo Island Reed Snake


Calamaria gervaisi Inger and Marx, 1965:106 (part).

**Type locality and type specimen(s).**— Polillo Id., Philippines. Holotype: CAS 62455.

**Philippine distribution (endemic)** (Map 6C [p. 117]).— Polillo.

**Remarks.**— Whether this nominal taxon deserves recognition as distinct from the neighboring Luzon population of C. g. gervaisi is an open question.

**Conservation status [IUCN].**— Only reported as C. gervaisi, Least Concern [2016] ver. 3.1.

Calamaria joloensis Taylor, 1922a
Jolo Island Reed Snake


**Type locality and type specimen(s).**— Jolo Id., Sulu Archipelago, Philippines. Holotype: CAS 60901 (formerly EHT 1855).

**Philippine distribution (endemic)** (Map 6D [p. 117]).— Sulu Archipelago (Jolo).

**Conservation status [IUCN].**— Data Deficient [2016] ver. 3.1.

Calamaria lumbricoidea H. Boie in F. Boie, 1827
Variable Reed Snake


Calamaria philippinica Steindachner, 1867:514–515, pl. 8, figs. 4–6 (type locality: “Philippinen”; holotype: NMW 23441).

**Type locality and type specimen(s).**— Java, Indonesia (fide Schlegel [1837b:27, pl. 1, figs. 14–16]). Lectotype: RMNH 10543, designated by Inger and Mark (1965:77).

**Philippine distribution** (Map 7A [p. 118]).— Basilan, Biliran, Bohol, Camiguin Sur, Dinagat, Leyte (Prov.: Leyte, Southern Leyte), Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Bukidnon, Cotabato, Davao City, Lanao del Norte, Lanao del Sur, Misamis Occidental, Misimas Oriental, Sarangani, South Cotabato, Surigao del Sur, Zamboanga del
Norte, Zamboanga City). (Partly after David, Pauwels, Lays, and Lenglet, 2006:214; for northeastern Mindanao, Sanguila et al., 2016.)

**General distribution (other than Philippines).**—Malaysia (West Malaysia; Sabah and Sarawak [Borneo]); Indonesia (Borneo, Java, Mentawai Archipelago, Natunas Ids., Nias, Sumatra); Singapore, Thailand. (After David, Pauwels, Lays, and Lenglet [2006:214].)

**Conservation status [IUCN].**—Least Concern [2016] ver. 3.1.

*Calamaria palavanensis* Inger and Marx, 1965

Palawan Reed Snake; Palawan Worm Snake


*Calamaria palavanensis* Inger and Marx, 1965:134, fig. 35.

**Type locality and type specimen(s).**—Palawan Id., Philippines. Holotype: CAS62151.

**Philippine distribution (endemic)** (Map 7B [p. 118]).—Palawan.

**Conservation status [IUCN].**—Data Deficient [2016] ver. 3.1.

*Calamaria suluensis* Taylor, 1922d

Sulu Reed Snake; Yellow-bellied Reed Snake

*Calamaria suluensis* Taylor, 1922d:189.—Inger and Marx, 1965:123, fig. 31.—Wallach, Williams, and Boundy, 2014:140.

**Type locality and type specimen(s).**—Deramakot, North Borneo (based on neotype selection). Holotype in Bureau of Science, Manila, lost during WWII; Neotype: FMNH (formerly CNHM) 76294, designated by Inger and Marx (1965:123); neotype from locality in North Borneo that is 180 km from original type locality of Cagayan Sulu in the Philippines.

**Philippine distribution** (Map 7C [p. 118]).—Cagayan Sulu.

**General distribution (other than Philippines).**—northern Borneo.

**Conservation status [IUCN].**—Least Concern [2016] ver. 3.1.

*Calamaria virgulata* H. Boie in F. Boie, 1827

Short-tailed Reed Snake


*Calamaria mearnsi* Stejneger, 1907b:30 (type locality Tangob, Mindanao Id.). Taylor, 1922a:193.

*Calamaria zamboangensis* Leviton, 1952:239, fig. 1 (type locality: Zamboanga, Mindanao Id.; holotype: CAS-SU 13476).

**Type locality and type specimen(s).**—Java, Indonesia but emended to Tjihandjawar, western Java, by Brongersma (1950) (see Wallach et al. [2014:140], for additional details). Holotype: RMNH 39.

**Philippine distribution.**—Mindanao [see Remarks below], Palawan, Sulu Archipelago.

**General distribution (other than Philippines)** (Map 7D [p. 118]).—western Indonesia, East Malaysia (Sabah). (See Inger and Marx [1965:186], alsoWallach et al. [2014:140], for details.)

**Remarks.**—The Mindanao records for *C. virgulata* (see above, Inger and Marx, 1965, and Wallach et al., 2014) most probably should be referred to *C. lumbricoidea* [*q.v.*].

**Conservation status [IUCN].**—Least Concern [2016] ver. 3.1.
**Pseudorabdion ater** (Taylor, 1922b)

Zamboanga Burrowing Snake

*Typhlogeophis ater* Taylor, 1922b:202, pl. 7, figs. 6–7.


**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 30C [p. 141]).— Mindanao (Prov.: Zamboanga del Sur [Zamboanga City] [Pasonanca]).

**REMARKS.**— Taylor placed this species in *Typhlogeophis* without explanation. He apparently did not compare it with specimens of Philippine *Pseudorabdion*.

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.

---

**Pseudorabdion longiceps** (Cantor, 1847)

Cantor’s Dwarf Reed Snake

*Calamaria longiceps* Cantor, 1847:910, pl. 40, fig. 1.

*Oxycalamus longiceps*, Günther, 1864:199 (redescription of type specimen).


*Pseudorhabdium longiceps*, Boulenger, 1894:329.— Griffin, 1911:261 (Luzon Island [after Peters, 1861; probably in error]).— Boulenger, 1912:154 (Philippine Islands [probably in error]).— de Rooij, 1917:146, text-fig. 61 (Philippine Islands [probably in error]).— Taylor, 1922a:178 (distribution compiled; description quoted from Boulenger, 1894).


*Rhabdion torquatum* Duméril, 1853:441 (*nomen nudum*). Duméril, Bibron, and Duméril, 1854:119 (type locality: Macassar; type in MNHN).— Casto de Elera, 1895:426 (various Philippine localities listed, but source of data unknown).

*Pseudorabdion torquatum*, Jan, 1862:10; 1863:30; 1865, Livr. 10, pl. 3, fig. 3.


**TYPE LOCALITY AND TYPE SPECIMEN(S).**— Pinang, Malay Peninsula. Holotype: BMNH 1946.1.2.13.

**PHILIPPINE DISTRIBUTION.**— Frequently listed but supposed records unverified.

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).**— Indonesia: Borneo (Kuching, Penrissen Road, Pontianak, Sebruang Valley, Simanggang); Celebes (Macassar); Nias; Sumatra (Ajerbangis, Deli, Gunung, Indragiri, Langkat, Oberlangkat, Sahilan, Sing-karah, Tebing Tinggi). Malaya: (Bangnara, Fraser’s Hill, Johore, Pa-hang [Gunong Tahan], Perak, Pinang, Selangor, Singapore, Wellesley Province). Riou Archipelago: Pulu Galang. Thailand: (Ban Gna, Patani).

**REMARKS.**— This is the most widely distributed species of *Pseudorabdion*. It differs from the other species in possessing a preocular scale. In other characters, *P. longiceps* agrees most closely with *P. oxycephalum* and *P. ater*.

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.
Pseudorabdion mcnamarae Taylor, 1917b
McNamara’s Dwarf Reed Snake; McNamara’s Burrowing Snake

Pseudorabdion mcnamarae Taylor, 1917:363, text-fig. 2a–e; 1922a:180, text-fig. 15a–c (redescription of type); 1922b:201 (suggests relationship to P. minutum).

Pseudorhabdium minutum Taylor, 1922b:200, pl. 7, figs. 4–5 (type locality: Balbalan, Kalinga Sub-prov., Luzon Id.; holotype: CAS 61544 [formerly Taylor F772]).


**Type Locality and Type Specimen(s).**— Canlaon Volcano, Negros Id., Philippines. Holotype: CM 2606.

**Philippine Distribution (Endemic)** (Map 30D [p. 141]).— Biliran, Cebu, Luzon (Prov.: Isabela), Masbate, Negros (Prov.: Negros Occidental), Panay (Prov.: Aklan, Antique), Sibuyan, Tablas.

**Remarks.**— In possessing a lori-ocular scale this species agrees with the Bornean and Celebesian species formerly placed in the genus Agrophis. In other characters P. mcnamarae approaches P. oxycephalum. Pseudorabdion taylori from Mindanao is related to P. mcnamarae.

Pseudorabdion cf. mcnamarae has been reported from Luzon (Prov.: Isabela) by Brown (2013:84, fig. 91), but the authors also suggest that the West Visayan and Luzon populations are likely distinct species (Brown et al., 2013:84–85).

**Conservation Status [IUCN].**— Vulnerable B2ab(ii,iii) [2016] ver. 3.1.

Pseudorabdion montanum Leviton and Brown (WC), 1959
Mountain Burrowing Snake; Mountain Reed Snake


**Type Locality and Type Specimen(s).**— north side of north peak of Cuernos de Negros, Negros Oriental Prov., Negros Id., Philippines. Holotype: CAS-SU 21080.

**Philippine Distribution (Endemic)** (Map 31A [p. 142]).— Cebu, Negros (Cuernos de Negros).

**Conservation Status [IUCN].**— Endangered B1ab(iii)+2ab(iii) [2016] ver. 3.1.

Pseudorabdion oxycephalum (Günther, 1858)
Gunther’s Dwarf Reed Snake; Negros Light-scaled Burrowing Snake

Rhabdosoma oxycephalum Günther, 1858:242.
Oxycalamus oxycephalus, Günther, 1873:168, figs.— Boettger, 1886:105.— Casto de Elera, 1895:425.

Pseudorhabdium oxycephalum, Boulenger, 1894:329.— Griffin, 1911:262.— Taylor, 1917:364; 1922a:179, fig. 14 (description after Boulenger, figs. after Günther [not Boulenger as stated]).

Typhlogeophis brevis Günther, 1879:77 (type locality: Mindanao or Dinagat Island; type BMNH [not confirmed].)— Boettger, 1886:106.— Boulenger, 1894:351, pl. 20.— Griffin, 1911:262.— Taylor, 1922a:183, text-fig. 16, pl. 24, figs. 1–4 (description and figs. after Boulenger); 1922b:202 (comparison with T. ater); 1928:236.

Typhlogeophus brevis, Casto de Elera, 1895:425 (listed).

**Type locality and type specimen(s).**—Philippines. Holotype: BMNH 1946.1.1.99.

**Philippine distribution (endemic)** (Map 31b [p. 142]).—Cebu, Masbate, Negros (Prov.: Negros Occidental, Negros Oriental), Panay (Prov.: Aklan). Localities needing confirmation include: Calamianes Isds., Luzon (Prov.: Aurora, Bataan, Nueva Ecija), Mindanao or Dinagat Isds.

**Remarks.**—This small, distinctive species of *Pseudorabdion*, once thought to be rare, has been found with increasing frequency on Negros Island. The species has been reported from other islands, Luzon (Casto de Elera [1895]), Mindanao or Dinagat (type of *Typhlogeophis brevis* Günther), and the Calamianes (specimen in the collection of CAS), but these records need confirmation.

Also, see Leviton and Brown (1959:487 et seq.) for a discussion of the status of *Typhlogeophis brevis* Günther, which was based on a single specimen said to have come from Mindanao or Dinagat islands, and was distinguished from *P. oxycephalum* in having its eyes “hidden” beneath the ocular scale.

*Pseudorabdion oxycephalum*, endemic to the Philippine Islands, does not appear to be close to Sulawesian or Bornean species. Indeed, its closest relative, *P. montanum*, is at present known only from the highlands on Negros Island.

**Conservation status [IUCN].**.—Least Concern [2016] ver. 3.1.

*Pseudorabdion talonuran* Brown (RM), Leviton, and Sison, 1999

Panay Cloud Forest Dwarf Reedsnake


**Type locality and type specimen(s).**—Mt. Madja-as, Barangay Allojipan, Culasi Municipality, Antique Prov., Panay Id., Philippines. Holotype: PNM 2712.

**Philippine distribution (endemic)** (Map 31C [p. 142]).—Panay (Prov.: Antique [Barangay Allojipan, Culasi]).

**Remarks.**—*Pseudorabdion cf. talonuran*, Brown, Siler, Oliveros, Welton, Rock, Swab, Van Weerd, van Beijnen, Jose, Rodriguez, Jose, andDiesmos (2013:86), from Isabela Prov., Luzon, may represent a distinct species.

**Conservation status [IUCN].**.—Vulnerable D2 [2016] ver. 3.1.

*Pseudorabdion taylori* Leviton and Brown (WC), 1959

Taylor’s Dwarf Reed Snake; Taylor’s Burrowing Snake

*Pseudorabdion taylori* Leviton and Brown, 1959:502, figs. 9–10.—Wallach, Williams, and Boundy, 2014:597.

**Type locality and type specimen(s).**—Saub, Cotabato Prov., Mindanao Id., Philippines. Holotype: MCZ 25749.

**Philippine distribution (endemic)** (Map 31D [p. 142]).—Mindanao (Prov.: Cotabato [Saub], Davao del Sur).

**Conservation status [IUCN].**.—Data Deficient [2016] ver. 3.1.
**Subfamily Colubrinae Oppell, 1811**

**Boiga angulata** (Peters, 1861)  
Photo figure 28

Philippine Blunt-headed Tree Snake

*Dipsas* (*Dipsadomorphus*) *angulata* Peters, 1861:688.

*Boiga angulata*, Griffin, 1910:213; 1911:263.— Taylor, 1922a:204, pl. 26, figs. 1–3, pl. 27.— Levi- 


**TYPE LOCALITY AND TYPE SPECIMEN(S).**— Leyte Id., Philippines (restricted to “NE shore of Leyte 
Is. between Tacloban (11°5ʹN, 125°00ʹE) and Dulag (10°57ʹN, 125°02ʹE),” by Wallach et 
al. [2014:99]). Holotype: ZMB 4000.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 3C [p. 114]).— Bohol, Catanduanes, Leyte, Luzon 
(Prov.: Laguna, Sorsogon, Zambales), Mindanao (Prov.: Bukidnon, North Cotabato, 
Davao del Sur, Lanao, Zamboanga City), Negros, Panay (Prov.: Alkan, Antique), Panay 
(Prov.: Antique), Polillo.

**REMARKS.**— According to Taylor (1923:553), *Boiga angulata*, also *B. schultzei*, are related to 
*B. drapiezii* (see Leviton [1970a:310–311]; also RM Brown, unpublished data). Jeffrey 
Weinell (2017, pers. comm.) suggested that the following citations for *Boiga angulata* are 
in error inasmuch as the associated images are of *B. cynodon* (Ferner, Brown, Sison, and 
Kennedy [2001:5118]; Devan-Song and Brown [2012:12, fig. 25]).

**CONSERVATION STATUS [IUCN]**.— Least Concern [2016] ver. 3.1.

**Boiga cynodon** (H. Boie in F. Boie, 1827)  
Photo figure 29

Dog-toothed Cat Snake

*Dipsas cynodon* H. Boie in F. Boie, 1827:549.

Ferner, Brown, Sison, and Kennedy, 2001:5219.— Oliveros, Ota, Crombie, and Brown, 
2011:13, figs. 6C, 6D.— Siler, Welton, Siler, Brown, Bucol, Diesmos, and Brown, 2011:190, 
fig. 30.— Siler, Swab, Oliveros, Diesmos, Averia, Alcala, and Brown, 2012:456.— Brown, 
Siler, Oliveros, Welton, Rock, Swab, Van Weerd, van Beijnen, Jose, Rodriguez, Jose, and Dies- 
mos, 2013:74, fig. 75.— Wallach, Williams, and Boundy, 2014:100.— Sanguila, Cobb, Siler, 
Diesmos Alcala, and Brown, 2016:89.— Supsup, Guiño, Redoblado, and Somez, 2017:7, fig. 
5c.


**TYPE LOCALITY AND TYPE SPECIMEN(S).**— Sumatra, Indonesia (in error); corrected to Java, Indonesia 
(see Wallach et al. [2014:100]). Holotype: RMNH 974 (see remarks in Wallach et al. 

**PHILIPPINE DISTRIBUTION (Map 3D [p. 114]).**— Babuyan Ids. (Calayan, Camiguin Norte), Basilan, 
Bohol, Carabao, Cabilao, Dinagat, Inamapulugan, Lubang, Leyte, Luzon (Prov.: Aurora, 
Cagayan, Ilocos Norte, Isabela, Laguna, Nueva Ecija, Quezon, Sorsogon), Mindanao 
(Prov.: Agusan del Sur, Cotabato, Davao Oriental, NE Mindanao, Zamboanga City), 
Negros (Prov.: Negros Occidental), Paan de Azucar, Palawan, Panay (Prov.: Alkan, 
Antique), Polillo, Romblon, Siquijor, Sulu Archipelago (Sibutu, Tawi-Tawi), Tablas.

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).**— Indonesia (Sumatra), Malaysia (West and 
Borneo), Singapore, Camboidia, Thailand, Myanmar, eastern India.

**REMARKS.**— Ferner et al. (2001:5118) report the discovery of this species, the first for the
Visayan Island group, but they pose that the identification remains to be firmly established. See also Remarks for Boiga angulata (above).

**Conservation Status [IUCN].**—Least Concern [2016] ver. 3.1.

**Boiga dendrophila divergens** Taylor, 1922

Northern Philippine Mangrove Snake

Boiga dendrophila divergens Taylor, 1922a:201; 1922c:299; 1922d:139.—Leviton, 1970a:305.—Gaulke, Demegillo, and Vogel, 2005:5 *et seq.*, figs. 4–5.—McLeod, Siler, Diesmos, Diesmos, Garcia, Arkoneo, Balaquit, Uy, Villaseran, Yarra, and Brown, 2011:188, fig. 7D.—Oliveros, Ota, Cromeine, and Brown, 2011:14, fig. 7A.—Siler, Welton, Siler, Brown, Bucol, Diesmos, and Brown, 2011:190, fig. 31.—Brown, Siler, Oliveros, Welton, Rock, Swab, Van Weerd, van Beijnen, Jose, Rodriguez, Jose, and Diesmos, 2013:74, fig. 76.

**Type Locality and Type Specimen(s).**—Mt. Makiling, Laguna Prov., Luzon Id., Philippines. Holotype: CM 2143.

**Philippine Distribution (Endemic)** (Map 4A [p. 115]).—Babuyan Ids. (Calayan), Luzon (Prov.: Aurora, Bulacan, Cagayan, Camarines Norte, Camarines Sur, Laguna, Nueva Ecija, Quezon, Sorsogon, Rizal), Polillo.

**Conservation Status [IUCN].**—The conservation status of *Boiga dendrophila divergens* has not been assessed for the IUCN Red List [2016] ver. 3.1.

**Boiga dendrophila latifasciata** (Boulenger, 1896)

Southern Philippine Mangrove Snake

Dipsadomorphus dendrophilus latifasciatus Boulenger, 1896:71.


**Type Locality and Type Specimen(s).**—Syntypes from Butuan, Agusan del Norte Prov. and Zamboanga del Sur [Zamboanga City] Prov., Mindanao Id., Philippines. Syntypes: BMNH (not confirmed).

**Philippine Distribution (Endemic)** (Map 4B [p. 115]).—Dinagat (?), Leyte, Mindanao (Prov.: Agusan del Sur, Bukidnon, Davao del Sur, Zamboanga del Sur [Zamboanga City]), Samar, Siargao.

**Conservation Status [IUCN].**—The conservation status of *Boiga dendrophila latifasciata* has not been assessed for the IUCN Red List [2016] ver. 3.1.

**Boiga dendrophila levitoni** Gaulke, Demegillo, and Vogel, 2005

Leviton’s Mangrove Snake; Panay Mangrove Snake


**Boiga cf. dendrophila** Ferner, Brown, Sison, and Kennedy, 2001:51[18].

**Type Locality and Type Specimen(s).**—Sitio Batiw, Barangay Badiangan, Municipality of Pandan, Antique Prov., Panay Id., Philippines. Holotype: PNM 7940.

**Philippine Distribution (Endemic)** (Map 4C [p. 115]).—Panay (Prov.: Antique, Iloilo [Gigantes Norte Id.] and probably other islands of the West Visayas region).

**Conservation Status [IUCN].**—The conservation status of *Boiga dendrophila levitoni* has not been assessed for the IUCN Red List [2016] ver. 3.1.
**Boiga dendrophila multicincta** (Boulenger, 1896)  
*Photo figure 34*
Palawan Mangrove Snake

*Dipsadomorphus dendrophilus multicinctus* Boulenger, 1896:71.

**Type locality and type specimen(s).**— restricted to Puerto Princesa, Palawan Id., Philippines by Brongersma (1934:216). Holotype: BMNH (not confirmed).

**Philippine distribution (endemic)** (Map 4D [p. 115]).— Balabac, Palawan.

**Remarks.**— For comments on illegal trading in this and other Palawan snakes as well as habitat destruction, see Dolorosa (2014), also Mendizabal (2011) and Ramirez (2012).

**Conservation status [IUCN].**— The conservation status of *Boiga dendrophilia multicincta* has not been assessed for the IUCN Red List [2016] ver. 3.1.

**Boiga drapiezii** ssp. (H. Boie in F. Boie, 1827)
White-spotted Cat Snake

*Dipsas drapiezii* H. Boie in F. Boie, 1827:549.
*Boiga drapiezii*, Wallach, Williams, and Boundy, 2014:101.— Binaday and Lobos, 2016:425

**Type locality and type specimen(s).**— Java, Indonesia (see Wallach et al. [2014:101], for restrictions of type locality). Holotype: RMNH 1006.

**Philippine distribution.**— Luzon (Prov.: Laguna, Quezon, Sorsogon), Mindanao (Prov.: Zamboanga del Sur [Zamboanga City]), Sulu Archipelago (Tawi-Tawi).

**General distribution (other than Philippines).**— (widely distributed according to Vogel [2015:7]) Thailand, Malaysia (West Malaysia and Borneo), Singapore, Indonesia (Java, Mentawai Ids., Sumatra, Naturna Ids., Borneo); Myanmar (*fide* Lee et al. [2015]).

**Remarks.**— As noted above under *Boiga angulata*, both *B. angulata* and *B. schultzei* are likely color variants of *B. drapiezii* (see early comments by Taylor [1923:553], also Leviton, [1970a:310–311]).

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

**Boiga philippina** (Peters, 1867)  
*Photo figure 35*
Luzon Cat Snake

*Dipsas philippina* W. Peters, 1867:27.
*Dipsadomorphus philippinus*, Boulenger, 1896:77.

**Type locality and type specimen(s).**— Ylaces (= Ilocos Prov.), Luzon Id., Philippines. Holotype: NMW 23401.

**Philippine distribution (endemic)** (Map 5A [p. 116]).— Babuyan Ids. (Babuyan Claro), Luzon (Prov.: Cagayan, Camarines Sur, Isabela, Ilocos, Laguna, Zambales).

**Remarks.**— Although Leviton (1970:312) speculated that this species could be conspecific with *B. angulata*, recent phylogenetic studies (J. Weinell, pers. obs.) seem to rule out the possibility of a close relationship between the two species. Furthermore, although Vogel
(2015:13) suggested that *B. philippina* belongs to the *B. drapiezii* complex, his comments do not appear to be based on any new accompanying data.

**Conservation Status [IUCN].**— Least Concern [2016] ver. 3.1. The confusion surrounding the identity and distribution of this species suggests it should be classified as “Data Deficient” until field and taxonomic studies clarify its status.

*Boiga schultzei* Taylor, 1923

Schultze’s Blunt-headed Tree Snake

*Boiga schultzei* Taylor, 1923:552, pl. 3, fig. 3.— Leviton, 1970a:310.


**Type Locality and Type Specimen(s).**— Palawan Id., Philippines. Holotype: MCZ 25791.

**Philippine Distribution (Endemic)** (Map 5B [p. 116]).— Palawan.

**Remarks.**— Related to and possibly conspecific with *Boiga drapiezii* (Taylor [1923:553]; see also Leviton [1970a:310–311], and RMB, unpublished data). See Remarks above for *Boiga angulata*.

**Conservation Status [IUCN].**— Least Concern [2016] ver. 3.1.

*Coelognathus erythrurus erythrurus* (Duméril, Bibron, and Duméril, 1854a) **Photo figure 37**

Southern Philippine Rat Snake

*Plagiodon erythrurus* Duméril, Bibron, and Duméril, 1854:175.

*Spilotes melanurus*, Günther, 1879:78 (Leyte).

*Compsoasma melanurum* var. *manillensis*, Müller, 1883:285 (Mindanao).


**Type Locality and Type Specimen(s).**— Java (in error), corrected to Samar Id., Philippines (see Leviton [1979:108, 110]). Lectotype: MNHN 7224, designated by Leviton [1979:103]).

**Philippine Distribution** (Map 10A [p. 121]).— Basilan, Bohol, Camiguin Sur, Camotes Ids. (Pacijan, Poro), Dinagat, Leyte (Prov.: Leyte), Mindanao (Prov.: Agusan del Sur, Bukidnon, South Cotabato, Davao, Maguindanao, Misamis Occidental, Sarangani, Zamboanga City), Samar (Prov.: Eastern Samar), Sulu Archipelago (Bongao, Jolo, Siasi). (See summary in David, Pauwels, Lays, and Lenglet [2006:215] [in part].)

**General Distribution (Other Than Philippines).**— Indonesia (Sulawesi, Butung) (see Remarks below).

**Remarks.**— Leviton (1979:109) noted that specimens he had seen from Leyte, Samar, and eastern Mindanao appeared to have a more variegated mottled pattern on the tail than specimens he had seen from the Zamboanga Peninsula and the Sulu Archipelago, but because of the small sample size, he could not be sure how variable this might be. However, he
also observed that in view of the differences seen among populations of other snakes inhabiting both eastern and western Mindanao (e.g., *Cyclocorus nuchalis* and *Rhabdophis auriculata*), and given the island’s past Pleistocene geological history, future investigations may indeed justify recognition of two taxa.

The population inhabiting the Indonesian islands of Sulawesi and Butung may represent a distinct subspecies, *E. e. celebensis*.

**Conservation Status [IUCN].**— The conservation status of *Coelognathus erythrurus erythrurus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

---

**Coelognathus erythrurus manillensis** (Jan, 1863)  
Northern Philippine Rat Snake

*Compsosoma melanurus*, Duméril, Bibron, and Duméril, 1854:301 (part: var. C [“varieté de Manille”]).

*Elaphis melanurus manillensis* Jan, 1863:61 (based on Duméril, Bibron, and Duméril, 1854:301); 1867:Livr. 21, pl. 4, fig. 2.


**Type Locality and Type Specimen(s).**— “Manille”. Type based on Duméril, Bibron, and Duméril (1854:301); MNHN (not confirmed).

**Philippine Distribution (Endemic)** (Map 10Bb [p. 121]).— Batanes Ids. (Batan), Babuyan Ids. (Barit, Calayan, Dalupiri), Luzon (Prov.: Albay, Aurora, Benguet, Bulacan, Cagayan, Camarines Sur, Cavite, Ifuago, Ilocos Norte, Isabela, Laguna, Manila, Nueva Vizcaya, Quezon, Pampanga, Sorsogon, Zambales), Mindoro (Prov.: Occidental Mindoro), Polillo.

**Remarks.**— Reported from Catanduanes Id., off the southeast coast of Luzon (see *Elaphe erythrura*, Ross and Gonzales [1992:66], who ascribe color pattern features as most like those of *C. e. psephenoura* of the Visayan Island group). It may well be that the Polillo, southern Luzon, Cantabuanes populations represent a distinct taxon.

Recent observations (and specimens in Kansas University [KU] collections) demonstrate that the “psephenoura-like” phenotype may be widespread on Bicol Peninsula as well (recent KU specimens from Sorsogon Prov.).

**Conservation Status [IUCN].**— The conservation status of *Coelognathus erythrurus manillensis* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*. 

---

**Photo Figure 38**

Northern Philippine Rat Snake

---

---

---

---
**Coelognathus erythrurus psephenourus** (Leviton, 1979)  
*Photo figure 39*

Western Visayan Rat Snake

*Elaphe erythrura*, Griffin, 1911:260 (Negros).—Taylor, 1917:359 (Negros); 1922a:156 (part: Negros).

**TYPE LOCALITY AND TYPE SPECIMEN(S).**—Barrio Asia, Negros Occidental Prov., Negros Id., Philippines. Holotype: CAS110957.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 10C [p. 121]).—Cebu, Guimaras, Inampulugan, Masbate, Negros (Prov.: Negros Occidental, Negros Oriental), Panay (Prov.: Aklan, Antique, Capiz, Iloilo, Siquijor, Tablas.

**REMARKS.**—See Remarks under *Coelognathus erythrurus manillensis* regarding possible presence of this subspecies throughout the Quezon-Bicol Faunal subregion (Catanduanes and Polillo Ids., and the Bicol Peninsula of Luzon).

**CONSERVATION STATUS [IUCN].**—The conservation status of *Coelognathus erythrurus psephenourus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life.

**Coelognathus philippinus** (Griffin, 1909a)

Palawan Rat Snake

*Coluber erythrurus*, Boettger, 1895:3, 5 (Calamian Ids.); 1898:54 (part: Culion).
*Elaphe philippina*, Griffin, 1909:597; 1911:260 (Palawan).—Taylor, 1922a:159 (part: Balabac, Busuanga, Palawan [Iwahig, Taytay]).


**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 10D [p. 121]).—Palawan Archipelago (Balabac, Busuanga, Calamian Ids. [Calauit], Culion, Palawan), Sulu Archipelago (Bongao, Sanga-Sanga, Sibutu, Tawi-Tawi).

**REMARKS.**—For a long time, this species was considered a subspecies of *Coelognathus* (formerly *Elaphe*) *erythrurus* but more recently Helfenberger (2001) demonstrated its distinctness from *C. erythrurus* that justifies its recognition as a separate and only distantly related species.

**CONSERVATION STATUS [IUCN].**—The conservation status of *Coelognathus philippinus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life.
**Dryocalamus philippinus** Griffin, 1909a
Philippine Bridal Snake

*Dryocalamus philippinus* Griffin, 1909b:596.— Taylor, 1922a:123, pl. 10, fig. 2, pl. 11, figs. 1, 3.— Wallach, Williams, and Boundy, 2014:248.

**Type Locality and Type Specimen(s).**— Iwahig, Palawan Id., Philippines. Neotype: CAS 62174, “designated by Leviton herein” (stated designation by Leviton, courtesy of Wallach et al. [2014:245]).

**Philippine Distribution (Endemic)** (Map 13C [p. 124]).— Balabac, Palawan (Iwahig, Puerto Princesa).

**Remarks.**— Leviton (1959:262) expressed his opinion that *D. philippinus* and *D. tristrigatus* were conspecific. Wallach et al. (2014:245) cited Leviton but the question of conspecificity remains unresolved.

**Conservation Status [IUCN].**— Vulnerable A4c [2016] ver. 3.1.

**Gonyosoma oxycephalum** (Reinwardt in F. Boie, 1827)  
Red-tailed Racer; Red-tailed Green Ratsnake

*Coluber oxycephalus* Reinwardt in F. Boie, 1827:537.


**Type Locality and Type Specimen(s).**— Java, Indonesia. Holotype: MNHN 677.

**Philippine Distribution** (Map 15B [p. 126]).— Babuyan Ids. (Calayan, Camiguin Norte), Balabac, Batan, Bohol, Dinagat, Leyte, Luzon (Prov.: Aurora, Ilocos Norte, Isabela, Laguna, Nueva Vizcaya, Quezon, Sorsogon, Zambales), Mindanao, Mindan圭o, Mindanao (Prov.: Agusan del Sur, Davao Oriental, South Cotabato, Surigao del Sur, Zamboanga City), Negros, Palawan, Panay (Prov.: Aklan, Antique, Iloilo), Sandtang, Sibuyan, Sulu Archipelago (Bongao).

**General Distribution (Other Than Philippines).**— Southeast Asia (Andaman Ids., Myanmar, Thailand, Cambodia, Laos, Vietnam, Malaysia, western Indonesia).

**Conservation Status [IUCN].**— Least Concern [2016] ver. 3.1.

**Liopeltis philippinus** (Boettger, 1897)
Philippine Smooth [Reed] Snake

*Ablabes philippinus* Boettger, 1897:164.— Griffin, 1911:261.


**Type Locality and Type Specimen(s).**— Culion (restricted by Leviton [1964a:370]; see also Mertens [1967:90]). Lectotype: SMF 19318 (§de Mertens [1967:90]; selected from suite of three Syntypes: SMF 8281, 8282 a–b).

**Philippine Distribution (Endemic)** (Map 20C [p. 131]).— Busuanga, Calamian Ids. (Caluiti),
Culion, Palawan. (Boettger also lists Samar but both Leviton (op cit.) and Mertens (op. cit.) question this reference.)

**CONSERVATION STATUS [IUCN].**— The conservation status of *Liopeltis philippinus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

*Liopeltis tricolor* (Schlegel, 1837)
Schlegel’s Smooth Snake; Malayan Reed Snake; Tricolored Ringsnake

*Herpetodryas tricolor* Schlegel, 1837b:187, pl. 6, figs. 16–18.


**PHILIPPINE DISTRIBUTION.**— Palawan, Sulu Archipelago (Bubuan).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES)** (Map 20D [p. 131]).— Western Indonesia, Malaysia (Peninsula; Sarawak), Singapore, southern Thailand, southern Cambodia (see Wallach, Williams, and Boundy [2014:378], for details).

**REMARKS.**— See Leviton (1963:372) for additional Philippine synonymy references. See also comments by David and Vogel (1996:93) and a good photo in Stuebing and Inger (1999:158).

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.

*Lycodon alcalai* Ota and Ross, 1994
Alcala’s Wolf Snake


*Lycodon cf. alcalai*, Oliveros, Ota, Crombie, and Brown, 2011:15, fig. 7D.

**TYPE LOCALITY AND TYPE SPECIMEN (S).**— ~2.5 km ENE of Basco on west slope of Mt. Iraya [elev. 150 m], Batan Id, Batanes Ids, off of northern Luzon Id., Philippines. Holotype: PNM 990.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 21A [p. 132]).— Babuyan Ids. (Babuyan Claro, Calayan, Camiguin Norte), also Batan and Sabtang Ids., off of northern Luzon.

**REMARKS.**— Siler et al. (2013) sampled both known islands within the distribution of *L. alcalai*, and inferred a very shallow divergence between this species and *L. bibonius* but no genetic divergence between *L. alcalai* and *L. chrysoprateros*, a species described from Dalupiri Island (Ota and Ross [1994]) and with which *L. alcalai* may be conspecific.

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.

*Lycodon aulicus* (Linnaeus, 1758)
See *Lycodon capucinus* below.

*Lycodon bibonius* Ota and Ross, 1994
Crombie’s Asian Wolf Snake

TYPE LOCALITY AND TYPE SPECIMEN(S).— ca. 1.5 km E of Mambit (elev. 70 m), Camiguin Norte Island, Babuyan Islands, off of northern Luzon Id., Philippines. Holotype: PNM 2044.

PHILIPPINE DISTRIBUTION (ENDEMIC) (Map 21B [p. 132]).— Babuyan Ids. (Babuyan Claro, Camiguin Norte).

REMARKS.— Siler et al. (2013) demonstrated a close relationship between L. bibonius and L. alcalai.

CONSERVATION STATUS [IUCN].— Least Concern [2016] ver. 3.1.

Lycodon capucinus (H. Boie in F. Boie, 1827)

Common Asian Wolf Snake

Lycodon capucinus H. Boie, 1826b:238 (nomen nudum); H. Boie in F. Boie, 1827:551.


Ophites tessellatus, Taylor, 1922a:124.

Lycodon aulicus capucina, Boettger, 1898:37.

Ophites aulicus, Taylor, 1922a:120, figs. 11a–b.


Lycodon aulicus / capucinus, Siler, Oliveros, Santanen, and Brown, 2013:268, 270–271, fig. 3.

TYPE LOCALITY AND TYPE SPECIMEN(S).— Java, Indonesia (original description based on pl. 37 in Russell, 1802); pl. 37 in Russell designated as Lectotype by Wallach, Williams, and Boundy (2014:392) (see also comments by Bauer [2015:54]).

PHILIPPINE DISTRIBUTION (Map 21C [p. 132]).— Bantayan, Bohol, Carabao, Cebu, Camiguin Sur, Cuyo, Dinagat, Leyte, Luzon (Prov.: Aurora, Bulacan, Cagayan, Camarines Norte, Ilocos Norte, Isabela, Laguna, Manila, Nueva Vizcaya, Quezon, Zambales), Masbate, Mindanao, Mindoro, Negros, Panay, Romblon, Samar, Semirara, Tablas.

GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).— Widely distributed throughout southeastern Asia (see Lanza [1999:95] and Wallach et al. [2014:392] for details).

REMARKS.— See Leviton (1965c:131) for an extensive synonymy for Philippine records.

Lycodon capucinus is a problematic species, often considered as a synonym of Lycodon aulicus differing only in the highly variable aspects of coloration (see discussion in Lanza [1999:94]). Based on aspects of its distribution in the Philippines, Leviton (1965c:134–135) suggested that its nomen superior, L. aulicus, was an introduced species. See also Siler, Oliveros, Santanen, and Brown (2013) for preliminary discussion of the lack of genetic diversity within the aulicus/capucinus species group.
Lycodon tessellatus, which, with a degree of hesitation we refer to the synonymy of L. capucinus, was formerly treated as a distinct, if somewhat suspect species, known only from the type specimen from Manila, and its placement has been the subject of considerable confusion since its description by Jan in 1863. Most recently, Ota (2000:299–304) reexamined the type specimen and provided new data that led him to suggest that “It is thus probable that L. tessellatus is most closely related to L. aulicus [L. capucinus in the Philippines]. However, [other characters notwithstanding] it differs in having three series of prominent alternating black spots on the dorsum, at least in the anterior part of the body . . . . Detailed character analysis and molecular studies of additional specimens are necessary to clarify the relationships of this enigmatic species.” (Ota [2000:302]). We concur.

**Conservation Status [IUCN]**.— Least Concern [2016] ver. 3.1.

*Lycodon chrysoprateros* Ota and Ross, 1994

Dalupiri Island Asian Wolf Snake; Ross’ Wolf Snake


**Type Locality and Type Specimen(s).**— east side of Dalupiri Id., Babuyan Ids., northern Luzon, Philippines. Holotype: PNM 2045.

**Philippine Distribution (Endemic)** (Map 21D [p. 132]).— Dalupiri Id., Babuyan Ids. (off of northern Luzon Id.).

**Remarks.**— Siler et al. (2013) used a multilocus molecular analysis DNA sequences to demonstrate that *L. chrysoprateros* is nearly genetically identical to *L. alcalai* (the Batanes Islands) as well as all populations on Calayan and Babuyan Claro islands. We suspect that *L. chrysoprateros* and *L. alcalai* may be conspecific.

**Conservation Status [IUCN]**.— Critically Endangered B1ab(iii) (IUCN [2016] ver. 3.1). See comments in the Introduction relating to the IUCN assessment of conservation status.

*Lycodon dumerilii* (Boulenger, 1893)

Duméril’s Asian Wolf Snake

*Stegonotus dumerilii* Boulenger, 1893:368.— Taylor, 1922a:130.

*Odontomus mülleri*, Günther, 1879:78.

*Dryocalamus mccroryi* Taylor, 1922b:197, pl. 6, figs. 1–3 (type locality: Abung-Abung, Basilan Ids.; holotype: CAS 60346 [formerly EHT 1517]).


*Lycodon dumerilii*, Siler, Oliveros, Santanen, and Brown, 2013:268, 272, fig. 3.— Wallach, Williams, and Boundy, 2014:393.— Sanguila, Cobb, Siler, Diesmos Alcala, and Brown, 2016:94, fig. 69.

**Type Locality and Type Specimen(s).**— Surigao, Surigao del Norte Prov. (formerly Surigao Prov.), Mindanao Id., Philippines. Lectotype: BMNH 1946.1.15.6 (formerly BMNH 77.10.9.67) (Lectotype designated by Leviton, 1965c:123).

**Philippine Distribution (Endemic)** (Map 22A [p. 133]).— Basilan, Dinagat, Leyte, Mindanao (Prov.: Agusan del Sur, Cotabato, Davao del Sur, Surigao del Norte, Zamboanga), Samar, Siargao.

**Remarks.**— Examination of a large adult specimen from Samar in the collections of the California Academy of Sciences (CAS-SU 13233), which almost precisely matches the descrip-
tion of “Stegonotus muelleri” in Boulenger (1893:367), appears to suggest that Boulenger’s reference can be assigned to *Lycodon dumerilii*. Both the BMNH and CAS-SU specimens are large adults and the typical cross-bars are obscured by a near uniform darkening of the dorsum. The Academy specimen shows the faintest hint of former lighter cross-bars, at best about 20 in number, that were narrower than the darker areas. None encroached upon the ventrals. However, the BMNH specimen and the one we examined here are significantly larger than any known species included in the genus *Lycodon* and thus we recognize *Stegonotus muelleri* (q.v.) as a distinct group pending further study. Furthermore, *S. muelleri* has been collected with greatly increased frequency; indeed, there are now several dozen specimens in the University of Kansas (KU) collections from Samar, Leyte and eastern Mindanao. See additional comments herein under *Stegonotus muelleri*.

**Conservation status [IUCN].**—The conservation status of *Lycodon dumerilii* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

*Lycodon fausti* Gaulke, 2002

Faust’s Asian Wolf Snake


**Type locality and type specimen(s).**—Barangay Guia, Municipality Pandan, Antique Province, NW Panay Peninsula, Panay Id., Philippines. Holotype: PNM 7271.

**Philippine distribution (endemic)** (Map 22B [p. 133]).—Panay (Prov.: Alkan, Antique).

**Conservation status [IUCN].**—Data Deficient [2016] ver. 3.1.

*Lycodon ferroni* Lanza, 1999

Ferron’s Asian Wolf Snake


**Type locality and type specimen(s).**—Lungib Ginbagsangan, about 32 km by air NNE of Catbalogan (“Barrio Kag-Toto-Og; Provincia Samar Occidental”), Samar Id., Philippines. Holotype: MZUF 36690.

**Philippine distribution (endemic)** (Map 22C [p. 133]).—Samar (Prov.: Western Samar).

**Conservation status [IUCN].**—Data Deficient [2016] ver. 3.1.

*Lycodon muelleri* Duméril, Bibron, and Duméril, 1854

Müller’s Asian Wolf Snake

*Lycodon mülleri* Duméril, Bibron, and Duméril, 1854:382.

**Stegonotus dumerili** (nec Boulenger), Boettger:1898:39.— Griffin, 1911:259 (in part).

**Haplonodon philippinensis** Griffin, 1910:212 (type locality: Polillo Island; type destroyed; neotype CAS 62425 [designated by Leviton, 1965c:127]).— Taylor, 1922a:126, text-figs. 13a–b, pl. 9.; 1922b:199; 1922d:137.

**Type locality and type specimen(s).**— Java (in error); restricted to Luzon Id., Philippines by Leviton (1965:126). Syntypes (2): MNHN 848 and 1320.

**Philippine distribution (endemic)** (Map 22D [p. 133]).— Batan (Itbayat), Catanduanes, Luzon (Prov.: Albay, Aurora, Camarines Norte, Cavite, Isabela, Laguna, Quezon, Sorsogon), Marinduque, Mindoro, Polillo.

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

*Lycodon sealei* Leviton, 1955

Seale’s Banded Asian Wolf Snake

*Ophites subcinctus*, Taylor, 1922a:124, text-figs. 12a–b, pl. 8.


**Type locality and type specimen(s).**— Puerto Princesa, Palawan Id., Philippines. Holotype: CAS 15819.

**Philippine distribution.**— Palawan.

**General distribution (other than Philippines)** (Map 23A [p. 134]).— Possibly also northern Borneo (Mt. Kina Balu [also as Kinabalu], Sandakan, Sungai).

**Remarks.**— Siler et al. (2013) used a multilocus phylogenetic study to demonstrate a substantial genetic divergence between *L. subcinctus* from Malaysia, Thailand, and Palawan. This plus the highly distinctive (reduced) banding pattern endemic to Palawan, suggests that this western Philippine lineage ought to be recognized as a distinct species.

**Conservation status [IUCN].**— The conservation status of *Lycodon sealei* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life.

*Lycodon solivagus* Ota and Ross, 1994

Northern Luzon Asian Wolf Snake


**Type locality and type specimen(s).**— Cabatacan Barrio, Lasam, Cagayan Prov., Luzon Id., Philippines. Holotype: PNM 2046.

**Philippine distribution (endemic)** (Map 23B [p. 134]).— Luzon (Prov.: Cagayan, Nueva Vizcaya).

**Conservation status [IUCN].**— Data Deficient [2016] ver. 3.1.

*Lycodon tessellatus*, Jan, 1863


**Type locality and type specimen(s).**— “Manila”, Luzon Id., Philippines. Holotype: NMW 21708.

**Remarks.**— See Remarks under *Lycodon capucinus*.
Oligodon ancorus (Girard, 1857)  
Photo figure 51

Luzon Kukri Snake; Northern Short-headed Snake

Xenodon ancorus Girard, 1857:182.
Holarchus ancorus, Taylor, 1922a:140, pl. 17, figs. 1–2, pl. 18, fig. 3; 1922d:137; 1923:548.

Type locality and type specimen(s).— not given but subsequently stated as Manila, Luzon Id., Philippines (Girard [1858:168]). Holotype: USNM 5521.


Remarks.— See Leviton (1963a:464) for comments on specimens said to have come from localities other than those mentioned here.


Oligodon maculatus (Taylor, 1918b)  
Photo figures 52–54

Mindanao Kukri Snake; Barred Short-headed Snake

Holarchus maculatus Taylor, 1918b:364, pl. 1; 1922a:143, pl. 15; 1925:109.

Type locality and type specimen(s).— Bunawan, Agusan del Sur Prov., Mindanao Id., Philippines. Holotype: CM 2571.

Philippine distribution (endemic) (Map 27C [p. 138]).— Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Cotabato, Davao del Sur, South Cotabato, Sibugao del Norte, Zamboanga City).

Conservation status [IUCN].— Least Concern [2016] ver. 3.1.

Oligodon meyerinkii (Steindacher, 1891)  
Sulu Kukri Snake; Sulu Short-headed Snake

Simotes meyerinkii Steindachner, 1891:294.
Holarchus meyerinkii, Taylor, 1922a:139, pl. 17, figs. 6–7; 1922c:197.

Type locality and type specimen(s).— Sulu-Inseln (= Jolo Id. [Sulu Archipelago]), Philippines. Syntypes (2): NMW 25828a–b.

Philippine distribution (Map 27D [p. 138]).— Sulu Archipelago (Bongao, Jolo, Papahag [also as Papahang], Sibutu, Tawi-Tawi).

General distribution (other than Philippines).— northern Borneo (without exact locality).

Conservation status [IUCN].— Endangered B2ab(iii) [2016] ver. 3.1.
**Oligodon modestus** Günther, 1864

Spotted-bellied Short-headed Snake; West Visayan Kukri Snake

*Oligodon modestus* Günther, 1864:210.—Wallach, Williams, and Boundy, 2014:490.


**Type locality and type specimen(s).**—Philippines; restricted to Negros Oriental Prov., Negros Id., Philippine Ids., by Leviton (1963a:474). Holotype: BMNH 1946.1.5.54.

**Philippine distribution (endemic)** (Map 28A [p. 139]).—Luzon (Prov.: Manila), Mindanao (Prov.: Surigao del Sur), Negros (Prov.: Negros Occidental, Negros Oriental), Panay (Prov.: Aklan, Antique), Tablas.

**Remarks.**—We believe that the Luzon and Mindanao records are in error and that the specimens supposedly collected at these locations were not carefully examined or there was a mixup of locality data accompanying the specimens (see comment by Leviton [1963a:474, footnote]). Inasmuch as the type specimen came from Negros Island, it is highly probable that this species is restricted to the West Visayan Island PAIC group, which includes Negros, Panay and Tablas islands, from which specimens have been collected and examined by one or more of the current authors.

**Conservation status [IUCN].**—The conservation status of *Oligodon modestus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

---

**Oligodon notospilus** Günther, 1873

Palawan Kukri Snake; Palawan Short-headed Snake

*Oligodon notospilus* Günther, 1873:169, pl. 28, fig. A.—Taylor, 1922a:148, pl. 7, fig. 2, pl. 17, figs. 3–5, pl. 18, fig. 1.—Wallach, Williams, and Boundy, 2014:491.


**Type locality and type specimen(s).**—Mindanao Id., Philippines [? in error; see Remarks below]. Holotype: BMNH 1946.1.3.23.

**Philippine distribution (endemic)** (Map 28B [p. 139]).—Balabac, Busuanga, Calauit, Mindanao (doubtful [see Remarks below]), Palawan (Iwahig, Puerto Princesa, Mt. Mantalingahan, Municipality of Brooke’s Point).

**Remarks.**—We believe that the locality data accompanying the type specimen to be in error inasmuch as this species is known only from islands in the Palawan Archipelago. For details see comments by Leviton (1963a:478 et seq.).

**Conservation status [IUCN].**—The conservation status of *Oligodon notospilus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

---

**Oligodon perkinsi** (Taylor, 1925)

Perkins Kukri Snake; Perkin’s Short-headed Snake

*Holarchus perkinsi* Taylor, 1925:108.


**Type locality and type specimen(s).**—Culion Id., Philippines. Holotype: MCZ 25725 (formerly EHT 1164).

**Philippine distribution (endemic)** (Map 28C [p. 139]).—Culion.
**Ptyas carinata** (Günther, 1858)

Keel-scaled Rat Snake

*Coryphodon carinatus* Günther, 1858:112.


*Ptyas carinata*, David and Das 2004.— Wallach, Williams, and Boundy, 2014:604.

**Type locality and type specimen(s).**— restricted to Borneo by Günther (1864:256). Lectotype: BMNH 1946.1.11.35 (designated by Günther [1864:256]).

**Philippine distribution (endemic)** (Map 32A [p. 143]).— Palawan.

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

**Ptyas luzonensis** (Günther, 1873)

Smooth-scaled Rat Snake; Smooth-scaled Mountain Rat Snake; Philippine Rat Snake


**Type locality and type specimen(s).**— Luzon Id., Philippines. Holotype: BMNH 1946.1.7.89.

**Philippine distribution (endemic)** (Map 32B [p. 143]).— Catanduanes, Leyte, Luzon (Prov.: Albay, Aurora, Bulacan, Cagayan, Camarines del Norte, Camarines del Sur, Ilocos Norte, Kalinga, Laguna, Quezon, Sorsogon, Zambales), Negros, Panay, Polillo.

**Remarks.**— Preliminary review suggests that the taxonomic relationships of the West Visayan (Negros, Panay) and Mindanao PAIC (Leyte Id.) populations should be reviewed.

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

**Stegonotus muelleri** Duméril, Bibron, and Duméril, 1854:682

Müller’s Ratsnake

*Stegonotus mülleri* Duméril, Bibron, and Duméril, 1854:682.

*Spilotes samarensis* Peters, 1861:685 (type locality: “Cubo-Cubo, Insel Samar”; holotype: ZMB 4294)

*Stegonotus muelleri* Boulenger, 1893:367.— Sanguila, Cobb, Siler, Diesmos Alcala, and Brown, 2016:96, fig. 71.

**Type locality and type specimen(s).**— Samar Id., Philippines. Holotype: MNHN 848.

**Philippine distribution (endemic)** (Map 35C [p. 146]).— Dinagat, Leyte (Prov.: Leyte, Southern Leyte), Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Davao del Sur, Misamis Occidental, Misamis Oriental, Sarangani, South Cotabato, Surigao del Norte), Samar.

**Remarks.**— In his review of the Philippine species of *Lycodon*, Leviton (1965) commented on
Boulenger’s reference to *Stegonotus muelleri* (Boulenger [1893:367]), which, according to Boulenger was based on *Stegonotus mülleri* Duméril, Bibron, and Duméril (1854:682). At the time Leviton stated that he was “restricting the nominal genus *Stegonotus* to include but a single species, *S. mülleri*” (Leviton [1965:120]) then known from Samar Island in the Philippines, as had been reported on by Boulenger, who had also included Peters’ *Spilotes samarensis* (Peters [1861:685]), also from Samar, in the synonymy of *S. muelleri*. Unfortunately, and at the same time, Leviton overlooked a specimen that was resident in the Stanford University collections, now at the California Academy of Sciences (CAS-SU 13233), that bears the locality Mercedes, Samar Island, Philippines, collected 25 July 1945 by Ralph F. Annereaux. An examination of this animal and with reference to both Duméril, Bibron, and Duméril and to Boulenger, indicates that this is a much larger snake than any of the known species of *Lycodon*, and it likely does indeed represent a distinct group that should be recognized in the Philippines. Furthermore, recent investigations indicate that it is rather widespread throughout the northern Mindanao PAIC islands of Leyte, Samar, Dinagat, and eastern Mindanao (Sanguila et al. [2016]).

Whether or not the Papuan species that have been assigned to the genus *Stegonotus* are indeed related to the Philippine species is an open question as is the possibility of differentiation between Samar-Leyte populations versus those from Mindanao (*sensu* Peters 1861).

**Conservation status [IUCN]**.— Near Threatened [2016] ver. 3.1

### Subfamily Natricinae Bonaparte, 1838

#### *Opisthotropis alcalai* Brown (WC) and Leviton, 1961

*Alcala’s Mountain Keelback*

*Opisthotropis alcalai* Brown (WC) and Leviton, 1961:2, fig. 1.— Wallach, Williams, and Boundy, 2014:498.

**Type locality and type specimen(s).—** Cugat Creek, west side of Dapitan Peak, Mt. Malindang, Zamboanga del Norte Prov., Mindanao Id., Philippines. Holotype: CAS-SU 22250.

**Philippine distribution (endemic)** (Map 29A [p. 140]).— Mindanao (Prov.: Zamboanga City [formerly Zamboanga del Sur], Zamboanga del Norte).

**Conservation status [IUCN]**.— Endangered B1ab(iii)+2ab(iii) [2016] ver. 3.1.

#### *Opisthotropis typica* (Mocquard, 1890a)

*Sabah Keelback Snake*

*Helicopsoides typicus* Mocquard, 1890:154.

*Opisthotropis typica*, Brown (WC) and Leviton, 1961:2, 4.— Wallach, Williams, and Boundy, 2014:500.

**Type locality and type specimen(s).—** Mt. Kinabalu, North Borneo. Holotype: MNHN 1889.216.

**Philippine distribution** (Map 29B [p. 140]).— Palawan (Brooke’s Point).

**General distribution (other than Philippines).—** East Malaysia (Sabah [Mt. Kina Balu {also as Kinabalu}]).

**Conservation status [IUCN]**.— Least Concern [2016] ver. 3.1.
**Rhabdophis auriculatus auriculatus** (Günther, 1858)  
Günther’s Philippine Keelback Snake; Günther’s White-lined Water Snake

*Tropidonotus auriculata* Günther, 1858:80.— Boulenger, 1893:261, pl. 17, fig. 1 (part).  
*Natrix auriculata*, Griffin, 1911:257 (part).— Taylor, 1922a:89, text-fig. 7, pl. 4, figs. 2–4.  
*Rhabdophis auriculatus*, Wallach, Williams, and Boundy, 2014:621 (part).


**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 33C [p. 144]).— Dinagat, Leyte, Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Cotabato, Davao City, Davao Occidental, Misamis Oriental, South Cotabato, Surigao del Sur), Samar.

**CONSERVATION STATUS [IUCN].**— The conservation status of *Rhabdophis auriculatus auriculatus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life* as *Rhabdophis auriculata* and as such it is listed by IUCN as Least Concern.

**Rhabdophis auriculatus myersi** Leviton, 1970  
Myers’ Philippine Keelback Snake; Myers’ White-lined Water Snake

*Tropidonotus auriculatus*, Boulenger, 1893:261 (part).  
*Natrix auriculata* (part), Taylor, 1922c:294; 1923:542.  


**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 33D [p. 144]).— Basilan, Bohol, Mindanao (Prov.: Misamis Occidental, Zamboanga del Norte, Zamboanga del Sur [Zamboanga City]).

**CONSERVATION STATUS [IUCN].**— The conservation status of *Rhabdophis auriculatus myersi* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life* as *Rhabdophis auriculata* and as such it is listed by IUCN as Least Concern.

**Rhabdophis barbouri** (Taylor, 1922)  
Barbour’s Philippine Keelback Snake


**TYPE LOCALITY AND TYPE SPECIMEN(S).**— Balbalan, Kalinga Subprov., Luzon Id., Philippines. Holotype: CAS 61552 (formerly EHT 939).


**REMARKS.**— As observed by Malnate and Underwood (1988:195), “In having high counts of ventrals, subcaudals, and maxillary teeth, *barbouri* shows some resemblance to Philippine *Tropidonophis negrosensis* and *dendrophiops*”, other characters are “significantly differ-
ent . . . but are present in Philippine species of *Rhabdophis. Natrix barbouri* Taylor, therefore, is assigned to *Rhabdophis*.”

**Conservation Status [IUCN].—** Data Deficient [2016] ver. 3.1.

*Rhabdophis chrysargos* (Schlegel, 1837)

Speckle-bellied Keelback Snake

*Tropidonotus chrysargos* Schlegel, 1837b:312, pl. 12, figs, 6–7.
*Natrix chrysarga*, Taylor, 12922a:87, pl. 4, fig. 5.

**Type Locality and Type Specimen(s).—** Java, Indonesia, suggested by Schlegel who states, “ne m’ont pas permis d’hésiter à adopter les vues de M.M. Kuhl et Reinwardt qui ont découvert ces Tropidonotes à l’île Java” (Schlegel. 1837b:312); further restricted to “Mt. Megamendung, Westjava” (*fide* Manthey and Grossmann, 1997:387). Lectotype: RMNH 10426 (formerly RMNH 1051), designated by Iskandar and Colijin (2001:104) (*fide* Wallach et al., 2014:622).

**Philippine Distribution** (Map 34B [p. 145]).— Balabac, Calamian Ids. (Busuanga, Culion), Palawan.

**General Distribution (Other than Philippines).—** Indonesia (Anambas Archipelago, Bali, Flores, Java, Kalimantan, Mentawai Archipelago, Nias, Simeulue, Sumatra, Ternate, Borneo.,) Laos, southern Burma (Myanmar), southern Thailand, Cambodia, Vietnam, Malaysia (Malaya and East Malaysia, Pulau Tioman), China (Hainan, Hong Kong)

**Conservation Status [IUCN].—** Least Concern [2016] ver. 3.1.

*Rhabdophis lineatus* (Peters, 1861)

Zigzag-lined Water Snake

*Natrix lineata*, Taylor 1922a:92, pl. 4, figs. 6–7, pl. 5.; 1922c:293.

**Type Locality and Type Specimen(s).—** Loquilocun, Insel Samar, Philippines. Syntypes (2): ZMB 3976a–b (*fide* Wallach et al. [2014:623] but also see additional comments by Wallach et al. [*op. cit.*] in regard to erroneous recognition of an additional syntype, NMW 23469, by Tiedemann and Häpul [1980:63; 1994:76]).

**Philippine Distribution (Endemic [Map 34C [p. 145]]).—** Basilan, Biliran, Bohol, Dinagat, Leyte (Prov.: Leyte, Southern Leyte), Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Davao del Sur, Misamis Oriental, South Cotabato, Zamboanga del Sur [Zamboanga City]), Samar (Prov.: Eastern Samar, Samar [formerly Western Samar]).

**Conservation Status [IUCN].—** Least Concern [2016] ver. 3.1.

*Rhabdophis spilogaster* (H. Boie in F. Boie, 1827)

Boie’s Keelback Snake

*Natrix stolatus*, Taylor, 1922a:84.
*Natrix spilogaster*, Taylor, 1922a:86, pl. 4, fig. 1; 1922d:137.

**TYPE LOCALITY AND TYPE SPECIMEN(S).**— Philippines (restricted to Luzon Id. by Wallach et al. [2014:624]). Syntypes (5): RMNH 1048a–b, RMNH 1049a–c (fide Wallach et al. [2014:624]).

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 34D [p. 145]).— Babuyan Ids. (Camiguin Norte), Batanes Ids. (Batuan), Catanduanes, Lubang, Luzon (Prov.: Aurora, Bataan, Batangas, Bulacan, Camarines Norte, Cavite, Ifugao, Ilocos Norte, Isabela, Laguna, Manila, Mountain, Nueva Vizcaya, Pampanga, Quezon, Rizal, Zamboanga), Polillo.

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.

**Tropidonophis dendrophiops** (Günther, 1883)  
Spotted Water Snake

*Tropidonotus dendrophiops* Günther 1883:136.  

*Natrix dendrophiops dendrophiops*, Taylor, 1922a:95.  
*Macropophis dendrophiops*, Malnate, 1960:48, 52, fig. 1 [map].

**TYPE LOCALITY AND TYPE SPECIMEN(S).**— Zamboanga, Mindanao Id., Philippines. Holotype: BMNH 1946.1.15.41 (original number BMNH 82.11.25.13).

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 37B [p. 148]).— Basilan, Biliran, Bohol, Camiguin Sur, Dinagat, Leyte, Luzon (Prov.: Cagayan, Isabela), Mindanao (Prov.: Agusan del Sur, Davao, Davao del Sur, Davao Oriental, Misamis Oriental, South Cotabato, Zamboanga del Sur [Zamboanga City]), Samar, Siquijor.

**REMARKS.**— Malnate and Underwood (1988:85), based largely on body scale characters and dentition, assigned two Philippine species formerly included in the genus *Natrix* and/or *Rhabdophis*, to *Tropidonophis*, i.e., *T. dendrophiops*, and *T. negrosensi*. Although we do not feel comfortable with these assignments and believe that the two nominal species should be reassigned to the now well-established genus *Rhabdophis*, we hesitate to do so pending a thorough genomic analysis. Also, with respect to the placement of the long enigmatic species “*Natrix barbouri* Taylor, 1922”, as noted in the Remarks under *Rhabdophis barbouri*, despite similarities in some features with *Tropidonophis*, they referred *barbouri* to *Rhabdophis* (Malnate and Underwood 1988:195).

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.
**Tropidonophis negrosensis** (Taylor, 1917b)
Negros Keelback Snake; Negros Spotted Snake

*Natrix dendrophiops negrosensis* Taylor, 1917b:356; 1922a:97, fig. 8.
*Macropophis barbouri*, Malnate, 1960:49, 52, fig. 1 [map].


**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 37C [p. 148]).— Azucar, Cebu, Masbate, Mindoro, Negros (Prov.: Negros Occidental, Negros Oriental), Paan de Azucar, Panay (Prov.: Iloilo), Sicogon (Prov.: Iloilo). Siquijor.

**REMARKS.**— A population identified as *T. cf. negrosensis* is herein reported from Lubang Id., based on material in the KU collection (Map 37A [p. 148]). See also Remarks under *T. dendrophiops*.

**CONSERVATION STATUS [IUCN].**— Vulnerable B1ab(iii)+2ab(iii) [2016] ver. 3.1.

---

**Subfamily Sibynophiinae Dunn, 1928**

*Sibynophis bivittatus* (Boulenger, 1894)

Palawan White-striped Snake

*Polydontophis bivittatus* Boulenger, 1894:82.
*Sibynophis bivittatus*, Taylor, 1922a:80, pl. 10, fig. 1.— Leviton, 1964a:376.— Wallach, Williams, and Boundy, 2014:659.
*Sibynophis geminatus bivittatus*, Gaulke, 1993a:151.


**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 35A [p. 146]).— Busuanga, Culion, Dumaran, Palawan.

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.

*Sibynophis geminatus geminatus* (H. Boie, 1826a)

Boie’s Many-tooth Snake; Striped Black-headed Snake

*Coluber geminatus* Oppel *in* H. Boie, 1826a:col. 211.


**PHILIPPINE DISTRIBUTION** (Map 35B [p. 146]).— Sulu Archipelago (Tawi-Tawi).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).**— Southwestern Indonesia.

**REMARKS.**— Wallach et al. (2014:660) exclude this species from the Philippines and, without explanation, assign the Tawi-Tawi record to *Sibynophis melanocephalus*. Boie (1826a) attributes the name to Oppel although Boie provides the diagnosis.

**CONSERVATION STATUS [IUCN].**— Least Concern [2016] ver. 3.1.
Family Lamprophiidae Fitzinger, 1843

**Remarks.**—The placement of the genera *Oxyrhabdium* and *Psammodynastes* in the family Lamprophiidae has been and is the subject of considerable controversy (see Lawson et al. [2005]; Vidal et al. [2007]; Pyron et al. [2011, 2013]; Figueroa et al. [2016]). Indeed, as Pyron et al. (2011:341) observed, “We follow Vidal et al. (2007) in tentatively recognizing Lamprophiidae as a single family, including Aparallactinae, Atractaspidae, Lamprophiinae, Psammophiinae, and Pseudoxyrophiinae. . . . [however] The genera *Buhoma*, *Oxyrhabdium*, and *Psammodynastes* cannot be placed confidently within the existing subfamilies of Lamprophiidae.” But even more recently, Weinell and Brown (2017) provided reasonably conclusive evidence for the placement of *Oxyrhabdium* along with *Cyclocorus* and *Hologerrhum* within the Lamprophiidae clade but as a distinct subfamily group. We do note that whereas *Myersophis* with *Oxyrhabdium* may be congenic, in this account we treat them as distinct genera, pending further study. Lastly, we have not fully resolved the placement of *Psammodynastes*, which we believe is reasonably associated with the Lamprophiidae, but how it relates to recognized subfamilies with the family is still under investigation.

Subfamily Cyclocorinae Weinell and Brown, 2017

*Cyclocorus lineatus alcalai* Leviton, 1967

Alcala’s Northern Triangle-spotted Snake


*Cyclocorus lineatus*, Wallach, Williams, and Boundy, 2014:200 (part).

**Type Locality and Type Specimen(s).**—ridge on north side of Maite River, 5 km west of Valencia, Negros Oriental Prov., Negros Id., Philippines. Holotype: CAS 101587 (formerly SU [Rept.] 18191).


**Conservation Status [IUCN].**—The conservation status of *Cyclocorus lineatus alcalai* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

*Cyclocorus lineatus lineatus* (Reinhardt, 1843)  
Northern Triangle-spotted Snake

*Lygodon lineatus* Reinhardt, 1843:241, pl. 1, figs. 7–9.


**Type locality and type specimen(s).**— Manila, Luzon Id., Philippines. Holotype: ZMuC 60489.

**Philippine distribution (endemic)** (Map 11B [p. 122]).— Babuyan Ids. (Calayan, Camiguin Norte), Cantanduanes, Lubang, Luzon (Prov.: Albay, Aurora, Bataan, Cagayan, Isabela, Kalinga, Laguna, Pampanga, Quezon, Rizal, Sorsogon, Zambales), Mindoro, Marinduque, Mindoro, Polillo.

**Conservation status [IUCN].**— The conservation status of *Cyclocorus lineatus lineatus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*. Under the nomen *Cyclocorus lineatus*, IUCN shows it as of Least Concern (IUCN [2016] ver. 3.1).

*Cyclocorus nuchalis nuchalis* Taylor, 1923

Photo figures 73–74

Southern Triangle-spotted Snake


**Type locality and type specimen(s).**— Pasananka [= Pasonanca], Zamboanga del Sur [Zamboanga City] Prov., Mindanao Id., Philippines. Holotype: CAS 62558 (formerly EHT 1428).

**Philippine distribution (endemic)** (Map 11C [p. 122]).— Basilan, Mindanao (Prov.: Bukidnon, Misamis Occidental, Sarangani, South Cotabato, Zamboanga del Sur [Zamboanga City], Zamboanga del Norte). (See summary David, Pauwels, Lays, and Lenglet [2006:251].)

**Conservation status [IUCN].**— Least Concern [listed as *C. nuchalis*]; under *C. nuchalis nuchalis*, “This taxon has not yet been assessed for the IUCN Red List, but is in the *Catalogue of Life: Cyclocorus nuchalis nuchalis* Taylor, 1923” (IUCN [2016] ver. 3.1).

*Cyclocorus nuchalis taylori* Leviton, 1967

Photo figure 75

Taylor’s Southern Triangle-spotted Snake


**Type locality and type specimen(s).**— Butuab, Agusan del Norte Prov., Mindanao Id., Philippines. Holotype: CAS 15242.

**Philippine distribution (endemic)** (Map 11D [p. 122]).— Camiguin Sur, Dinagat, Leyte (Prov.: Layte), Mindanao (Prov.: Agusan del Norte, Bunawan, Davao City, Davao del Norte, Davao Oriental), Samar, Siargao (Prov.: Surigao del Norte).

**Conservation status [IUCN].**— The conservation status of *Cyclocorus lineatus taylori* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

*Hologerrhum dermali* Brown (RM), Leviton, Ferner, and Sison, 2000

Dermal’s Cylindrical Snake; Crombie’s Stripe-lipped Snake


**Type locality and type specimen(s).**— 1510 m above sea level in the area known locally as “Hanggud Tubig” (“Big Water”), on the western face of Mt. Madja-as, Barangay Alojipan, Municipality of Culasi, Antique Prov., Panay Id., Philippines. Holotype: PNM 2711.
PHILIPPINE DISTRIBUTION (ENDEMIC) (Map 16B [p. 127]).— Panay (Prov.: Aklan, Antique), Sibuyan [observed and photographed but no voucher specimens].

REMARKS.— We are indebted to Leonard G. Soriano who provided a verifiable photograph to authenticate the first and only known record to date for the occurrence of this species on Sibuyan Island.

CONSERVATION STATUS [IUCN].— Endangered B1ab(iii) [2016] ver. 3.1.

Hologerrhum philippinum Günther, 1858
Philippine Stripe-lipped Snake; Philippine Cylindrical Snake


*Cyclochorus maculatus*, Jan, 1870:36 (genus name misspelled; specimen *H. philippinum* with doubtful locality data).

*Cyclochorus lineatus* var. *maculatus* Fischer, 1885:81.

TYPE LOCALITY AND TYPE SPECIMEN(S).— Philippines. Holotype: BMNH 1946.1.2.41.

PHILIPPINE DISTRIBUTION (ENDEMIC) (Map 16C [p. 127]).— Catanduanes, Luzon (Prov.: Bataan, Bulacan, Cagayan, Camarines Norte, Camarines Sur, Isabela, Kalinga, Laguna, Mountain, Quezon, Sorsogon, Zambales), Marinduque, Polillo.

CONSERVATION STATUS [IUCN].— Least Concern [2016] ver. 3.1.

Myersophis alpestris Taylor, 1963
Myers’ Mountain Snake


TYPE LOCALITY AND TYPE SPECIMEN(S).— in mountains near Banaue, Ifugao Subprovince, Mountain Prov., Luzon Id., Philippines. Holotype: KU 203012 (formerly EHT-HMS 3109; *fide* Leviton [1983:212]).

PHILIPPINE DISTRIBUTION (ENDEMIC) (Map 26B [p. 137]).— Luzon (Prov.: Mountain, Nueva Vizcaya [Mt. Palali]).

CONSERVATION STATUS [IUCN].— Data Deficient [2016] ver. 3.1.

Oxyrhabdium leporinum leporinum (Günther, 1858) Photo figures 78–79, [80–82]
Northern Philippine Banded Burrowing Snake

*Rhabdosoma leporinum* Günther, 1858:12 (part*).


*Oxyrhabdium leporinum*, Boulenger, 1893:303, pl. 19, fig. 2.— Taylor, 1922a:103, figs. 10a–b; 1922c:296.— Wallach, Williams, and Boundy, 2014:506 (part).

*Oxyrhabdium leporinum* leporinum, Leviton, 1958:296; 1965a:417.— Brown, McGuire, Ferner, Icarangal Jr., and Kennedy, 2000:189, fig. 30.— Diesmos, Brown, and Gee, 2004:71.— McLeod, Siler, Diesmos, Diesmos, Garcia, Arkonceo, Balaquit, Uy, Villaseran, Yarra, and

**Type locality and type specimen(s).**— “Philippine Islands” but one of the two syntypes was shown to be a specimen of *O. modestum* by Boulenger (1893:303); “Luzon” by subsequent selection by Boulenger (1893:303, pl. 19, fig. 2). Lectotype: BMNH 1946.1.13.98.

**Philippine distribution (endemic)** (Map 29C [p. 140]).— Babuyan Isds. (Calayan), Luzon (Prov.: Aurora, Batangas, Benguet, Bulacan, Cagayan, Ilocos Norte, Kalinga, Laguna, Nueva Viscaya, Nueva Ecija, Quezon), Marinduque, Mindoro.

**Conservation status [IUCN].**— The conservation status of *Oxyrhabdium leporinum leporinum* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life* under the species name *O. leporinum* and under this nomen it is shown as Least Concern (IUCN [2016] ver. 3.1).

*Oxyrhabdium leporinum visayanum* Leviton, 1957

**Photo figure 83**

Western Visayan Banded Philippine Burrowing Snake


*Oxyrhabdium leporinum*, Wallach, Williams, and Boundy, 2014:506 (part).

**Type locality and type specimen(s).**— Maite River at elev. ~ 915 m, Cuernos de Negros, Negros Oriental Prov., Negros Id., Philippines. Holotype: CAS-SU 18907.

**Philippine distribution (endemic)** (Map 29D [p. 140]).— Cebu, Negros (Prov.: Negros Occidental, Negros Oriental), Panay (Prov.: Antique).

**Conservation status [IUCN].**— The conservation status of *Oxyrhabdium leporinum visayanum* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life* under the species name *O. leporinum* and under this nomen it is shown as Least Concern (IUCN [2016] ver. 3.1).

*Oxyrhabdium modestum* (Dumérill, Bibron, and Dumérill 1854a)

**Photo figure 84**

Non-banded Philippine Burrowing Snake

*Stenognathus modestus* Dumérill, Bibron and Dumérill, 1854:504.


**Type locality and type specimen(s).**— “Java” [in error]; Mindanao Id., Philippines (designated by Leviton [1958:291]). Syntypes (2): MNHN 7301a–b.

**Philippine distribution (endemic)** (Map 30A [p. 141]).— Basilan, Biliran, Bohol, Camiguin Sur, Catanduanes, Dinagat, Leyte, Maripipi, Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Bukidnon, Cotabato, Davao, Davao Oriental, Davao del Sur, Misamis Occidental, Misamis Oriental, South Cotabato, Sarangani, Zamboanga del Norte, Zamboanga del Sur [Zamboanga City]), Samar. (Reports from Negros and Panay need confirmation.)

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.
Subfamily [incertae sedis] Pseudaspindinae  
[fide Vidal et al., 2007, nec Pyron et al., 2011]

Psammodynastes pulverulentus (H. Boie in F. Boie, 1827)  
Mole viper; Philippine Mock Viper; Dark-spotted Mock Viper

Psammophis pulverulentus H. Boie in F. Boie, 1827:547.
Lycocon bairdi Steindachner, 1867:90 (type locality Philippines).
Psammodynastes pulverulentus, Bouleneger, 1890:363; 1896:172.— Taylor, 1922a:209, figs. 18a–c;  


**TYPE LOCALITY AND TYPE SPECIMEN(S).**— Java, Indonesia. Lectotype: RMNH 765 (designated by Inger in Van Wallach et al. [2014:574]).

**PHILIPPINE DISTRIBUTION** (Map 30B [p. 141]).— Balabac, Basilan, Batan Ids. (Batan, Sabtang), Bohol, Calamian Archipelago (Busuanga), Camiguin Sur, Cebu, Dinagat, Leyte, Luzon (Prov.: Albay, Aurora, Cagayan, Camarines Norte, Camarines Sur, Ilocos Norte, Isabela, Laguna, Nueva Vizcaya, Quezon, Sorsogon), Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Bukidnon, Davao, Lanao del Sur, Misamis Occidental, Misamis Oriental, South Cotabato, Surigao del Norte, Zamboanga del Norte, Zamboanga del Sur [Zamboanga City]), Negros (Prov.: Negros Occidental, Negros Oriental), Palawan, Panay, Polillo, Samar, Siargao, Sulu Archipelago (Bongao, Jolo).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).**— Widely distributed from India and throughout Southeast Asia, southern and eastern China, Taiwan. (See David, Pauwels, Lays, and Lenglet [2006:218]; also Miller and Zug [2016:fig. 1 {distribution map}].)

**CONSERVATION STATUS [IUCN].**— The conservation status of Psammodynastes pulverulentus has not been assessed for the IUCN Red List [2016] ver. 3.1.

(Dangerously Venomous snakes)

Family Elapidae F. Boie, 1827

Subfamily Elapinae F. Boie, 1827

Calliophis bilineata Peters, 1881

Two-striped Coral Snake


Doliophis bilineatus, Bouleneger, 1890:404.— Griffin, 1909c:600; 1911:266.— Taylor, 1922a:274,  
pl. 34, figs. 5–6, pl. 35, fig. 3.


Calliophis intestinalis, Wallach, Williams, and Boundy, 2014:143 (part).

**Type locality and type specimen(s).**—“Insula Philippinensis Palawan” [= Palawan], Philippines. Holotype ZMB 10004 [fide Bauer et al. 1995:75].


**Conservation status [IUCN].**—This taxon has not yet been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

**Calliophis philippina** Günther, 1864  
Photo figures 87–90

Philippine [banded or striped] Coral Snake

*Calliophis intestinalis* var. *Philippina* Günther, 1864:349.  
*Doliophis philippinus*, Boulenger, 1896:404.—Griffin, 1911:266.—Taylor, 1918a:261; 1922a:277, pl. 35, figs. 1–2; 1922c:301.  
*Calliophis intestinalis*, Wallach, Williams, and Boundy, 2014:143 (part).  

**Type locality and type specimen(s).**—Philippine Ids. Holotype: BMNH [not confirmed].


**Conservation status [IUCN].**—The conservation status of *Calliophis philippina* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

**Calliophis salitan** Brown (RM), Smart, Leviton, and Smith, 2018  
Photo figure 91

Dinagat Island Banded Coral Snake

*Calliophis salitan*. Brown, Smart, Leviton, and Smith, 2018:93, figs. 1, 4–7.

**Type locality and type specimen(s).**—Mt. Cambinliasa [elev. 195 m], sitio Cambinlia (Studlon), Barangay Santiago, Municipality Loreto, Dinagat Id., Dinagat Ids. Prov., Mindanao PAIC, Philippines. Holotype: PNM 9844 (formerly KU 310164).

**Philippine distribution (endemic)** (Map 8C [p. 119]).—Dinagat Island.

**Conservation status [IUCN].**—Not available as of IUCN [2016] ver. 3.1.

**Calliophis suluensis** Steindacher, 1891

Sulu Archipelago Banded Coral Snake

*Calliophis intestinalis suluensis* Steindacher, 1891:295.  
*Calliophis intestinalis*, Wallach, Williams, and Boundy, 2014:143 (part).  

**Type locality and type specimen(s).**—Sulu Archipelago, Philippines. Holotype not traced.

**Philippine distribution (endemic)** (Map 8D [p. 119]).—Sulu Archipelago (Jolo, Siasi).

**Conservation status [IUCN].**—The conservation status of *Calliophis suluensis* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.
Hemibungarus calligaster (Wiegmann, 1834b) [Annulated or Barred] Philippine False Coral Snake

*Elaps calligaster* Wiegmann, 1834b:253, pl. 20, fig. 2.

*Calliophis calligaster* [sic], Müller, 1883:289.

*Hemibungarus calligaster*, Taylor, 1922a:269, pl. 33, figs. 1–2, pl. 34, figs. 1–2; 1922c:300; 1922d:139.—Castoe et al., 2007:809 et seq. (part) — Devan-Song and Brown, 2012:14.—Leviton, Brown, and Siler, 2014:495, figs. 8B, 9, 33.—Wallasch, Williams, and Boundy, 2014:319 (part).


*Hemibungarus calligaster calligaster*, McLeod, Siler, Diesmos, Diesmos, Garcia, Arkoncoe, Bal-aquit, Uy, Villaseran, Yarra, and Brown, 2011:188.—Siler, Welton, Siler, Brown, Bucol, Diesmos, and Brown, 2011:190, fig. 33.—Brown, Siler, Oliveros, Welton, Rock, Swab, Van Weerd, van Beijnen, Jose, Rodriguez, Jose, and Diesmos, 2013:88, fig. 95.

**TYPE LOCALITY AND TYPE SPECIMEN(S).**—Manila, Luzon Id., Philippines. Holotype: ZMB 2742.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 15C [p. 126]).—Luzon (Prov.: Albay, Bataan, Bulacan, Camarines Sur, Isabela, Laguna, Manila, Quezon, Rizal, Zambales), Mindoro (Prov.: Mindoro Occidental).

**REMARKS.**—Ross and Gonzales (1992:68) cite two specimens from Catanduanes as well as two from the Bicol region of Luzon that in their view differ from previously recognized “races” of *H. calligaster*, i.e., *H. calligaster* and *H. gemianulis*, and therefore left the matter of assignment to future study.

**CONSERVATION STATUS [IUCN].**—Least Concern [2016] ver. 3.1.

*Hemibungarus gemianulis* Peters, 1872 [Double-barred] Philippine False Coral Snake; Barred Coral Snake


*Hemibungarus calligaster*, Taylor, 1922a:269, pl. 33, figs. 1–2, pl. 34, figs. 1–2 (part).—Castoe et al., 2007:809 et seq. (part)—Wallasch, Williams, and Boundy, 2014:319 (part).


**TYPE LOCALITY AND TYPE SPECIMEN(S).**—“Philippine Ids.” Holotype: ZMB 7405 (*fide* Bauer and others [1995:76]).

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 15D [p. 126]).—Cebu, Guimaras, Masbate, Negros (Prov.: Negros Occidental, Negros Oriental), Panay (Prov.: Aklan, Antique, Iloilo).

**CONSERVATION STATUS [IUCN].**—The conservation status of *Hemibungarus calligaster* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life.

*Hemibungarus mcclungi* Taylor, 1922a [McClung’s Philippine Coral Snake]

*Hemibungarus mcclungi* Taylor, 1922a:272, pl. 33, fig. 3, pl. 34, figs. 3–4; 1922b:300.—Leviton, Brown, and Siler, 2014:495.

*Calliophis calligaster mcclungi*, Leviton, 1964d:547.

Hemibungarus calligaster, Wallach, Williams, and Boundy, 2014:319 (part).

**Type locality and type specimen(s).**— Polillo Id., Philippines. Holotype: Philippine Bureau of Science, Manila; destroyed during WWII. Neotype: CAS 62431 (formerly EHT 302, designated by Leviton [1964b:547]).

**Philippine distribution (endemic)** (Map 16A [p. 127]).— Cantanduanes, Luzon (Prov.: Aurora, Bicol Peninsula [Albay, Camarines Sur], Quezon, Sorsogon), Polillo.

**Conservation status [IUCN].**— The conservation status of Hemibungarus mcclungi has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the Catalogue of Life as Hemibungarus calligaster mcclungi Taylor, 1922 (IUCN [2016] ver. 3.1).

*Naja philippinensis* Taylor, 1922a
Northern Philippine Cobra


**Type locality and type specimen(s).**— Manila, Luzon Id., Philippines. Holotype: Philippine Bureau of Science, Manila; destroyed during WWII. Neotype: (PNM [not confirmed]).

**Philippine distribution (endemic)** (Map 26C [p. 137]).— Luzon (Prov.: Aurora, Batangas, Benguet, Bulacan, Cavite, Cagayan, Ilocos Norte, Kalinga, Laguna, Nueva Vizcaya, Pampanga, Pangasinan, Quezon, Rizal, Zamboales), Marinduque, Masbate, Mindoro.

**Conservation status [IUCN].**— Near Threatened [2016] ver. 3.1.

*Naja samarensis* Peters, 1861
Southern Philippine Cobra; Samar Cobra

*Naja tripudians var. samarensis* Peters, 1861:690.


**Type locality and type specimen(s).**— Loquilocum, Samar Id., Philippines. Holotype: ZMB 3955.

**Philippine distribution (endemic)** (Map 26D [p. 137]).— Bohol, Camiguin Sur, Dinagat, Leyte, Mindanao (Prov.: Agusan del Norte, Bukidnon, Davao del Sur, Lanao, Misamis Occidental, South Cotabato, Zamboanga City), Samar.

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.
Naja sumatrana F. Müller, 1887
Equatorial or Sumatran Spitting Cobra

_Naja tripudians var. sumatrana_ Müller, 1887:277.
_Naja naja miolepis_, Taylor, 1922a:262, text-fig. 30.—Leviton, 1965b:538.

**TYPE LOCALITY AND TYPE SPECIMEN(S).**—Solok, Sumatera Barat Prov., Sumatra, Indonesia. Holotype: NMBA 2244.


**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).**—Thailand (southern), Malaysia (Peninsula, Borneo), Indonesia (Borneo).

**CONSERVATION STATUS [IUCN].**—Least Concern [2016] ver. 3.1.

Ophiophagus hannah (Cantor, 1836) Photo figure 95
King Cobra

_Hamadryas hannah_ Cantor, 1836:87, pls. 10–12; 1838:72.


_Naja hannah_, Taylor, 1922a:256, text-fig. 29, pl. 31, figs. 2–3; 1922d:139.—Smith, 1943:436.

**TYPE LOCALITY AND TYPE SPECIMEN(S).**—Sundarbans (also as Sunderbuns), nr. Calcutta, Bengal, India. Holotype: BMNH 1996.451.

**PHILIPPINE DISTRIBUTION** (Map 28D [p. 139]).—Balabac, Bohol, Catanduanes, Cebu, Dinagat, Leyte (Prov.: Leyte), Luzon (Prov.: Aurora, Benguet, Bulacan, Camarines Norte, Isabela, Kalinga, Laguna, Nueva Ecija, Nueva Vizcaya, Pangasinan, Sorsogon, Zambales), Mindanao (Prov.: Davao del Sur, Zamboanga del Norte, Zamboanga del Sur [Zamboanga City], South Cotabato), Mindoro, Negros (Prov.: Negros Oriental), Palawan, Panay (Prov.: Antique), Polillo, Romblon, Sulu Archipelago (Jolo).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).**—Widely distributed throughout Southeast Asia, from Pakistan through South and Southeast Asia, southern China, Malaysia, Singapore, Indonesia. (See Wallach, Williams, and Boundy [2014:497] for details.)

**CONSERVATION STATUS [IUCN].**—Vulnerable A2acd [2016] ver. 3.1.
Subfamily Hydrophiinae Fitzinger, 1843*

*Aipysurus eydouxii* (Gray, 1849)
Spine-tailed or Marbled Sea Snake

*Tomogaster eydouxii* Gray, 1849:59.


**Type locality and type specimen(s).**—Indian Ocean. Holotype: BMNH 1946.1.6.86 (formerly BMNH III.10.1; *fide* Smith [1926:16]).

**Philippine distribution.**—No verifiable records or voucher specimens.

**General distribution (other than Philippines).**—Widely distributed in coastal waters off of Australia (Queensland, Northern Territory, Western Australia), New Guinea, Indonesia, Gulf of Thailand, Singapore, Malaysia, South China Sea.

**Remarks.**—Although reported for the Philippines, no verifiable records or voucher specimens. Taylor (1922a:227) states, “I have seen no specimens. Both Boulenger [1896:304] and Wall [1910:189] give the Philippines as part of its range, and the species is included in the present work on their authority.”; Smith (1926:16) also questions the authenticity of Boulenger’s report.

**Conservation status [IUCN].**—Least Concern [2016] ver. 3.1.

*Emydocephalus annulatus* Krefft, 1869
Annulated Sea Snake; Turtleheaded Sea Snake


**Type locality and type specimen(s).**—“Probably the Australian Seas” (see David and Ineich [1999:91]). Syntypes (2): AMS 454 and 6633.

**Philippine distribution** (Map 15B [p. 125]).—“Probably all over Philippine seas” (Alcala [1986:163]) but without exact references.

**General distribution (other than Philippines).**—Australia, Papua New Guinea, Indonesia (Irian), Loyalty Islands.

**Conservation status [IUCN].**—Least Concern [2016] ver. 3.1.

*Hydrophis [Kolpophis] annandalei* (Laidlaw, 1901)
Annandale’s Sea Snake; Bigheaded Sea Snake

*Distira annandalei* Laidlaw, 1901:579, pl. 35.

*Kolpophis annandalei*, Smith, 1926:106, fig. 31.—David and Ineich, 1999:121.—Wallach, Williams, and Boundy, 2014:345.


*As the authors stated in an earlier publication (Leviton, Brown, and Siler [2014:501–502]), David and Ineich (1999:104) reviewed the controversy surrounding the use of the name *Hydrophis* to include several nominal taxa, *Distira*, *Leioselasma*, and *Aturia* that had been recognized by various authors. In so doing, they followed Rasmussen (1996), who also recommended recognizing *Astrotia* and *Enhydrina* as distinct genera. More recently, several phylogenetic studies have led to the abandonment of at least 10 heretofore recognized genera by placing them and their included species in the genus *Hydrophis* (Sanders et al. [2013]; Pyron et al. [2013]). Although we have adopted the newly proposed taxonomic arrangements here, we have also indicated where those changes have occurred by including in brackets [ ] the genus name to which the respective species had been previously assigned. It should be noted that the bracketed name does not imply a sub-genus designation. The authors mistakenly assigned *Microcephalophis gracilis* to *Hydrophis*, neglecting to note that Sanders et al. (2013:584) specifically recommended continued recognition of *Microcephalophis* as a distinct genus from the *Hydrophis* core group to include *M. gracilis* and *M. cantoris*. 
**Type Locality and Type Specimen(s).** — Patani Bay, Malaysia Peninsula. Holotype: BMNH 1946.1.17.56 (formerly BMNH 1926.10.18.1; fide Smith [1926:107]).

**Philippine Distribution.** — Philippines (not yet reported from the Philippines but has been reported from coastal waters of northern Borneo [Brunei] and Vietnam in the South China Sea as well as the Gulf of Thailand).

**General Distribution (other than Philippines).** — Indonesia (Java), Singapore, Malaysia, and Thailand (see David and Ineich [1999:121] for references).

**Conservation Status [IUCN].** — Data Deficient [2016] ver. 3.1.

*Hydrophis [Thalassophis] anomalus* Schmidt, 1852

Anomalous Sea Snake


**Type Locality and Type Specimen(s).** — Java, Indonesia. Holotype: ZMH 3342 (formerly ZMH 402 [fide Wallach et al. [2014:702]])

**Philippine Distribution.** — Not yet reported from coastal Philippine waters but one record for the northern coast of Borneo [Brunei] and elsewhere in the Gulf of Thailand.

**General Distribution (other than Philippines).** — Indonesia (Java, Kalimantan, Moluccas), Malaysia, Singapore, Thailand, Vietnam.

**Conservation Status [IUCN].** — Data Deficient [2016] ver. 3.1.

*Hydrophis atriceps* Günther, 1864

Southeast Asian Sea Snake; Blackheaded Banded Sea Snake


*Dissteira cincinnatii* Van Denburgh and Thompson, 1908:41, pl. (type locality: Manila Bay, off Cavite, Luzon Id.; holotype: CAS 15016).

*Hydrophis fasciatus atriceps*, Smith, 1926:97, fig. 27; 1943:465.


**Type Locality and Type Specimen(s).** — Siam. Syntypes (2): BMNH 1946.1.2.62 (formerly BMNH 62.11.1.255), and BMNH 63.9.29.5; fide Smith [1926:98]; see also Wallach et al. [2014:334]).

**Philippine Distribution** (Map 16D [p. 127]) — Luzon (Prov.: Cavite [Manila Bay]), Mindanao, Samar, Sulu Archipelago, Visayan Sea.

**General Distribution (other than Philippines).** — coastal waters off the east coast of Malaysia, Gulf of Thailand, Vietnam, southern China, Indonesia to western New Guinea, and northern Australia.

**Remarks.** — This species is so similar in appearance to *H. fasciatus* that the two have been regarded as conspecific, though treated as distinct subspecies (Smith [1926, 1943]), but recent studies have treated them as distinct species (see McCarthy [1993:230, 234]; David and Ineich [1999:104, 109]; Wallach et al. [2014:462]). Alcala (1986:164) referred to records from the Visayan Sea and areas around Samar, Mindanao, and the Sulu islands to *H. fasciatus* but David and Ineich (1999:105) noted that “According to A. R. Rasmussen (pers. comm., June 1996), all references of *Hydrophis fasciatus* based on specimens taken East
of Malacca Strait, from Gulf of Thailand to southern China and to the north coast of Australia, belong to *Hydrophis atriceps*; we follow his interpretation.” We accept this interpretation as well.

**Conservation Status [IUCN]**.— Least Concern [2016] ver. 3.1.

*Hydrophis [Chitulia] belcheri* (Gray, 1849)
Belcher’s Sea Snake; Faint-banded Sea Snake

*Aturia belcheri* Gray, 1849:46.  
*Chitulia belcheri*, Wallach, Williams, and Boundy, 2014:163.

**Type Locality and Type Specimen(s).**— New Guinea. Holotype: BMNH 1946.1.1.97 (formerly BMNH III.3.2.a; *fide* Smith [1926:53]).

**Philippine Distribution** (Map 17A [p. 128]).— Philippines, unknown, although Alcala (1986a:166) states that it “has been recorded from the central Philippine sea.”; see also comment by Ferner et al. (2001:54[21]), who cite Alcala (1986). Otherwise, it has been reported from the coastal waters off of Vietnam in the South China Sea (Rasmussen et al. [2011:5]).

**General Distribution (Other than Philippines).**— Gulf of Thailand, Vietnam, Indonesia, and New Guinea. (N.B.: David and Ineich [1999:105], citing earlier discussions by McDowell [1972:217] and McCarthy and Warrell [1991:162–163], refer the Australasian records to *Hydrophis pacificus*, but see also Kharin [2005:161], whose observations heighten the confusion regarding the identification of samples of populations supposedly belonging to *H. belcheri*. See also comments by Rasmussen [2001] relating to *H. coggeri*.)

**Conservation Status [IUCN]**.— Data Deficient [2016] ver. 3.1.

*Hydrophis brookii* Günther, 1872
Brook’s Sea Snake


**Type Locality and Type Specimen(s).**— Sarawak [coast], Borneo, Malaysia. Holotype: BMNH 1946.1.1.57 (formerly BMNH 72.2.16.58; *fide* Smith [1926:101]).

**Philippine Distribution.**— Unknown in the Philippines, but it has been reported from South China Sea, along the coast of Sarawak, Borneo (Smith [1926:101]; Stuebing and Inger, [1999:207]), and Vietnam (David and Ineich [1999:106]; Rasmussen [2011:5]).

**General Distribution (Other than Philippines).**— Thailand, Indonesia, Malaysia, Singapore, Vietnam, Sarawak coast of Borneo.

**Conservation Status [IUCN]**.— Least Concern [2016] ver. 3.1.

*Hydrophis caerulescens* (Shaw, 1802)
Blue-grey Sea Snake; Dwarf Sea Snake

*Hydrus caerulescens* Shaw, 1802:561.  
*Hydrophis caerulescens*, Smith, 1926:90, fig. 26.— David and Ineich, 1999:106.— Sanders, Lee,
Polyodontognathus caerulescens, Wallach, Williams, and Boundy, 2014:563.

**Type locality and type specimen(s).**— Indian Ocean. Holotype: BMNH 1946.1.3.90 (formerly BMNH III.6.13.a; *fide* Smith [1926:92]).

**Philippine distribution.**— (This species has not been recorded from the Philippines but it has been reported from off the Sarawak Coast of northern and western Borneo (Stueling and Inger [1999:208]).

**General distribution (other than Philippines).**— Widely distributed from coastal Pakistan to western Indonesia, Australia (see David and Ineich [1999:106] for details).

**Remarks.**— According to Stueling and Inger (1999:208) off the Sarawak coast (Borneo) this snake on occasion has been caught up in shrimp trawls, more frequently in sheltered embayments rather than the open sea. The authors also note that although a small non-aggressive snake, with “a small mouth and tiny fangs”, it possesses a dangerous venom, and it can produce a “serious, even fatal bite.”

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

*Hydrophis [Leioselasma] coggeri* Kharin, 1984

Cogger’s Sea Snake; Pacific Yellow-banded Sea Snake; Slender-necked Sea Snake


**Type locality and type specimen(s).**— Port Suva, Fiji Ids. Holotype ZISP 19681.

**Philippine distribution.**— said to occur in the Philippines (Rasmussen [2001:4002] and distribution map; also Zug [2013:229]) but most likely *H. melanocephalus* (see Rasmussen et al. [2011:6]).

**General distribution (other than Philippines).**— north coast of Australia, New Caledonia, east to Vanuatu and Fiji.

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

*Hydrophis [Lapemis] curtus* Shaw, 1802

Short or Hardwicke’s Sea Snake


*Lapemis curtus hardwickii*, McCarthy, 1993d:244.


**Type locality and type specimen(s).**— India. Holotype: BMNH 1946.1.17.59 (formerly BMNH III.2.2.a; *fide* Smith [1926:110]).

**Philippine distribution** (Map 17B [p. 128]).— Luzon (Prov.: Cavite [Manila Bay], Manila
G Eneral distribution (other than Philippines).— Widely distributed, from the Persian Gulf to Australia, along the southeast coast of India to Straits of Malacca, Indonesia, Australia, and north to China, Taiwan, and Japan. (See Wallach et al. [2014:354] for details.)

R emarks.— Gritis and Voris (1990) do not recognize *Lapemis hardwickii* [now *Hydrophis hardwickii*] as a distinct species, placing it in the synonymy of *L. curtus*. McCarthy (1993) recognized it as a subspecies of *L. curtus*, allowing that the nominate form inhabits coastal waters from the Persian Gulf to the shores of western India, and *L. curtus hardwickii* ranges from the coastal waters of Sri Lanka and eastern India to New Guinea and Australia and north to the coast of China, the Philippines, and Japan (see also David and Ineich [1999:121–122]). Smith (1926:113, 1943:471) argued that *L. curtus* ranges from the Persian Gulf to the west coast of India as far as Sri Lanka but that it is unknown along the east coast of India. We follow Gritis and Voris inasmuch as theirs is the most comprehensive analysis of character variation done so far, and based on their study there are no morphological features that justify recognizing two species although we emphasize that recent phylogenetic studies (Sanders et al. [2013]) place the genus *Lapemis* and its included species in the genus *Hydrophis*.

C onservation status [IUCN].— Least Concern [2016] ver. 3.1.

*Hydrophis cyanocinctus* Daudin, 1803

Annulated Sea Snake; Many-banded Sea Snake; Bluebanded Sea Snake


T ype locality and type specimen(s).— Sunderbunds [= Sunderbans] (Ganges Delta), India. Holotype: BMNH 1946.1.9.23 (formerly BMNH 96.3.25.6; *fide* Smith [1926:61]) (see also Russell [1801:pl. 9] [*fide* David and Ineich {1999:108}]).

P hilippine distribution (Map 17C [p. 128]).— Cebu, Luzon (Prov.: Cavite [Manila Bay]; Manila [Manila Bay]), Mindanao (Prov.: Basilan [Pilas Id.]), Visayan region [*fide* Alcala {1986a:164}]).

G eneral distribution (other than Philippines).— Extensive range from Persian/Arabian Gulf east to Indonesia and north to the Idzu Sea, Japan (see David and Ineich [1999:108] for details).

C onservation status [IUCN].— Least Concern [2016] ver. 3.1.

*Hydrophis inornatus* (Gray, 1849)

R emarks (Map 17D [p. 128]).— According to David and Ineich (1999:111), Rasmussen (1989) referred records of Philippine and Indonesian *H. inornatus* to *H. ornatus* (see Rasmussen synonymy [1989:399], also comments on p. 410). Rasmussen also states, “However, the acceptance of *H. inornatus* as a separate species is explicitly preliminary and further study
may show that the type specimen of *H. inornatus* is an aberrant specimen of *H. ornatus*.” (Rasmussen [1989:415]). (See also Leviton, Brown, and Siler [2014:506]).

**Conservation Status [IUCN].—** Data Deficient [2016] ver. 3.1.

**Hydrophis [Kerilia] jerdoni Gray, 1849**

Jerdon’s Sea Snake


**Type Locality and Type Specimen(s).—** Madras, India. Holotype: BMNH 1946.1.10.11 (formerly BMNH III.8.1.a; *fide* Smith [1926:32]).

**Philippine Distribution.**— Philippines (not recorded from the Philippines but reported from coastal waters of northern Borneo and elsewhere in the South China Sea north to Taiwan).

**General Distribution (Other than Philippines).**— Widely distributed from coastal waters of southeast Indian Peninsula, Sri Lanka, Myanmar, Thailand, Mergui Archipelago, Malacca Straits, Singapore, and west and northwest coast of Borneo.

**Remarks.**— Two subspecies of *Kerilia jerdoni* have been recognized, but not all authors agree on their status. *Kerilia j. jerdoni* is the form that would be encountered in the Bay of Bengal along the coasts of southeast India, Sri Lanka, and Myanmar, whereas *K. j. siamensis* ranges from the east coast of Peninsular Thailand to the Borneo coast (Rasmussen and Anderson [1990]).

We have assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

Although not yet recorded from the Philippines, its occurrence in shallow coastal waters off the coast of northern Borneo suggests it will likely be found in coastal waters off of the Palawan Island group and perhaps in the Sulu Sea.

**Conservation Status [IUCN].—** Least Concern [2016] ver. 3.1.

**Hydrophis [Mediohydrophis] klossi Boulenger, 1912**

Kloss’s Sea Snake


*Mediohydrophis klossi*, Wallach, Williams, and Boundy, 2014:422.

**Type Locality and Type Specimen(s).—** Selangor, Malaysia Peninsula. Holotype: BMNH 1946.1.10.8 (formerly BMNH 1920.6.3.7; *fide* Smith [1926:69]).

**Philippine Distribution.**— Philippines (not yet reported from Philippine waters; Stuebing and Inger [1999:210] report one specimen off the coast of northern Borneo).

**General Distribution (Other than Philippines).**— east coast of Malay Peninsula, Thailand, Singapore, western Indonesia (Sumatra).

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**Conservation Status [IUCN].—** Data Deficient [2016] ver. 3.1.

**Hydrophis [Chitulia] lamberti Smith, 1917**

Lambert’s Sea Snake


Chitulia lamberti, Wallach, Williams, and Boundy, 2014:163.

**Type locality and type specimen(s).**— Bight of Bangkok, Thailand. Holotype: BMNH 1946.1.9.20 (formerly BMNH 1921.2.11.13' fide Smith [1926:83]).

**Philippine distribution** (Map 18A [p. 129].)— Gigantes Ids. (Prov.: Iloilo), Luzon (Manila Bay).

**General distribution (other than Philippines).**— Singapore, Gulf of Thailand, Vietnam.

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013:583) and Pyron et al. (2013).

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

*Hydrophis [Leioselasma] melanocephalus* Gray, 1849

Black-headed Sea Snake; Slender-necked Sea Snake

*Hydrophis sublaevis* var. *melanocephalus* Gray, 1849:53.


**Type locality and type specimen(s).**— Indian Ocean ? (questioned by Smith [1926:65]); “‘China Sea or even . . . the Ryukyus’ via lectotype selection” (Wallack et al. [2014:359]). Lectotype: BMNH 1946.1.9.22 (formerly BMNH 47.3.4.68; fide Smith [1926:65]).

**Philippine distribution.**— Philippines (fide Rasmussen [2011]; David and Ineich [1999]) but without locality details.

**General distribution (other than Philippines).**— Vietnam, China, Taiwan, Japan (Ryukyu Ids.).

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**Conservation status [IUCN].**— Data Deficient [2016] ver. 3.1.

*Hydrophis [Chitulia] ornatus* (Gray, 1842)

Ornate Sea Snake; Reef Sea Snake; Spotted Sea Snake

*Aturia ornata* Gray, 1842b:61.


*Chitulia ornata*, Wallach, Williams, and Boundy, 2014:164.

**Type locality and type specimen(s).**— Indian Ocean. Holotype: BMNH 1946.1.23.72 (formerly BMNH III.3.1.a; fide Smith [1926:83]).


**General distribution (other than Philippines).**— Persian [Arabian] Gulf to New Guinea and Australia and north along the coast of China to the Ryukyu Ids. (See also comments by Zug [2013:230] relating to reports of occurrence in the Gilbert Islands.)

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.
**Hydrophis [Acalyptophis] peronii** (A.H.A. Duméril, 1853)

Spiny-headed Sea Snake or Horned Sea Snake


**Type locality and type specimen(s).**— New Holland (but questioned by Smith, 1926:103). Holotype: MNHN 7177.

**Philippine distribution.**— Philippines (unknown, but it has been reported from the coast of the Malaysian Peninsula and Vietnam in the South China Sea).

**General distribution (other than Philippines).**— Gulf of Siam, including coastal Thailand, Vietnam, Malaysia, Indonesia, South China Sea north to Taiwan, and east to New Guinea, New Caledonia, and Australia.

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013:583) and Pyron et al. (2013).

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

**Hydrophis [Pelamis] platurus** (Linnaeus, 1758)  
[Photo figure 98]

Pelagic Sea Snake; Yellow-bellied Sea Snake

*Anguis platura* Linnaeus, 1766:391.
*Pelamis platura*, Rasumssen et al., 2011:9.— Wallach, Williams, and Boundy, 2014:529.
*Hydrophis platyurus* [sic], Sanguila, Cobb, Siler, Diesmos Alcala, and Brown, 2016:103.

**Type locality and type specimen(s).**— Not stated. Holotype not traced (see Wallach et al. [2014:529]).

**Philippine distribution** (Map 18C [p. 129]).— Gigantes Ids., Luzon (but said to be widely distributed), Mindanao (Prov.: Zamboanga Sibugay [Sibuguey Bay]), Sulu Archipelago (Jolo, Sibutu), Surigao.

**General distribution (other than Philippines).**— Most widely distributed of all sea snakes, from east coast of Africa throughout southern and eastern coastal Asia, as far north as southern Siberia, throughout Indonesia to Australia and Tasmania, also from Gulf of Panama north to Baja California in western North America and Hawaiian Islands. (See Wallach et al. [2014:529] for details.)

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

**Hydrophis [Enhydrina] schistosus** (Daudin, 1803)  
[Photo figure 99]

Beaked Sea Snake; Hooked-nosed Sea Snake

*Hydrophis schistosus* Daudin, 1803, 7:386.


**TYPE LOCALITY AND TYPE SPECIMEN(S).** — “Restricted to Tranquebar [= Tharangambadi], Tamil Nadu State, SE India . . . fide M.A. Smith (1926a: 39)” (Wallach et al. [2014:265]; see also Bauer [2015:46]). Type based on Russell, 1801, p. 11, pl. x and p. 13, pl. xi. According to Wallach et al. (op. cit.), “Holotype, BMNH 1946.1.10.7 (formerly RCSM & BMNH 1921.7.28.1) . . .”

**PHILIPPINE DISTRIBUTION.** — Philippines (although there are no specific records, its wide range and occurrence in the South China Sea in muddy bottoms of coastal waters and at the mouths of streams, makes its occurrence in the coastal waters of southwestern Philippines likely).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).** — Persian/Arabian Gulf (Iraq, Iran), Oman, Pakistan, India, Myanmar, Thailand, Malaysia, Singapore, Indonesia, east to New Guinea and Australia (David and Ineich [1999:92]).

**REMARKS.** — Stuebing and Inger note that “The Beaked Sea Snake is a dangerous species, with potent venom and a reputation in Peninsula Malaysia for biting fishermen. Because of its preference for muddy bottoms, it is sometimes trod upon in shallow tidal flats by people who wade barefoot while netting prawns.” (Stuebing and Inger [1999:207].)

**REMARKS.** — We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**CONSERVATION STATUS [IUCN].** — Least Concern [2016] ver. 3.1.

**Hydrophis [Leioselasma] semperi** Garman, 1881

Lake Taal Sea snake


**TYPE LOCALITY AND TYPE SPECIMEN(S).** — Lake Taal, Luzon Id., Philippines. Holotype: MCZ 4352.

**PHILIPPINE DISTRIBUTION (ENDEMIC)** (Map 18D [p. 129]). — Luzon (Prov.: Batangas [Lake Taal]).

**REMARKS.** — We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**CONSERVATION STATUS [IUCN].** — Vulnerable B1ab(iii,v); D2 [2016] ver. 3.1.

**Hydrophis [Leioselasma] spiralis** (Shaw, 1802)

Yellow Sea Snake

*Hydrus spiralis* Shaw, 1802:564, pl. 125.


**TYPE LOCALITY AND TYPE SPECIMEN(S).** — Indian Ocean. Holotype: BMNH 1946.1.6.94 (formerly BMNH III.6.10.c) (see comment by Smith [1926:50], also Bauer [2015:57]).

**PHILIPPINE DISTRIBUTION** (Map 19A [p. 130]). — Philippines (a single record, juvenile, from Mergus [Smith {1926:50}] has been repeatedly cited without further evidence of presence in Philippine coastal waters; Wallach et al. [2014:360] include Tablas in their distribution list).

**GENERAL DISTRIBUTION (OTHER THAN PHILIPPINES).** — Widely distributed from the Persian/Ara-
bian Gulf east to Malaysia and Indonesia (see David and Ineich [1999:118]; Wallach et al. [2014:360]).

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

*Hydrophis [Astrotia] stokesii* (Gray, 1846)

Malayan [or Stokes’] Sea Snake


**Type locality and type specimen(s).**— Australian seas. Holotype: BMNH 1946.1.17.12 (formerly BMNH III.9.1.d; *fide* Smith [1926:115]).

**Philippine distribution** (Map 19B [p. 130]).— Gigantes Sur (Prov.: Iloilo) (see Dunson and Minton [1978:282]).

**General distribution (other than Philippines).**— Widely distributed from India to Australia and north into the South China Sea. (See David and Ineich [1999:63], and Wallach, et al. [2014:59] for details.)

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**Conservation status [IUCN].**— Least Concern [2016] ver. 3.1.

*Hydrophis [Praescutata; Thalassophina] viperinus* (Schmidt, 1852)

Grey Sea Snake

*Thalassophis viperina* Schmidt, 1852:79, pl. 3.


**Type locality and type specimen(s).**— Java, Indonesia. Holotype: NMH (also as ZMH) 404 (*fide* Smith [1926:35]).

**Philippine distribution.**— Philippines (not yet reported from coastal Philippine waters but present in the South China Sea and Gulf of Thailand).

**General distribution (other than Philippines).**— Widely distributed from Persian/Arabian Gulf to eastern Asia, including off the coasts of northern Borneo (Sarawak), Thailand, Vietnam, China, as far north as Taiwan (for details see David and Ineich [1999:177]; Stuebing and Inger [1999:220]; Wallach et al. [2014:702]), as well as eastward to northern Australia and into the western Pacific (Zug [2013:231]).

**Remarks.**— We have tentatively assigned this species to *Hydrophis* consistent with the treatments of *Hydrophis* and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013).

**Conservation status [IUCN].**— The conservation status of *Hydrophis viperinus* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*. 

---
Microcephalophis gracilis (Shaw, 1802)

Common Small-headed Sea Snake

“Kadell nagam” Russel, 1801:15, pl. 13.

_Hydrus gracilis_ Shaw, 1802:560.


_Hydrophis gracilis_, Leviton, Brown, and Siler, 2014:506, fig. 19C.

**Type locality and type specimen(s).** — Type locality unknown. Holotype: BMNH 1946.1.17.37 (formerly BMNH III.4.1.a; _fide_ Smith [1926:123]).

**Philippine distribution** (Map 26A [p. 137]). — Luzon (Manila Bay).

**General distribution (other than Philippines).** — Widely distributed from Persian/Arabian Gulf (coastal Saudi Arabia, Kuwait, Iraq, Iran, and Oman) east to the Bay of Bengal, Gulf of Thailand, Malaya and Singapore, South China Sea, and Indonesia, to New Guinea (Gulf of Guinea). (See Wallach et al., 2014:431, for details.)

**Remarks.** — We have retained this species in the genus _Microcephalophis_ consistent with the treatments of _Hydrophis_ and related nominal genera by Sanders et al. (2013) and Pyron et al. (2013) (see also footnote p. 60 herein).

**Conservation status [IUCN].** — Least Concern [2016] ver. 3.1.

Subfamily Laticaudinae Cope, 1879

*Laticauda colubrina* (Schneider, 1799)  
Yellow-lipped sea krait

_Hydrus colubrinus_ Schneider, 1799:238.


**Type locality and type specimen(s).** — Type locality “Ostindischens Meer” in the ZMB catalog (Bauer [1998:139] and Wallach et al. [2014:355]). Holotype: ZMB 9078 (_fide_ Smith [1926:8]).

**Philippine distribution** (Map 19D [p. 130]). — Babuyan Ids. (Babuyan Claro, Barit, Calayan, Dalupiri, Mabag). Bantayan, Bohol, Cebu, Luzon (Manila Bay, Verde Island Passage; [Prov.: Zambales {Subig Bay}]), Maestre de Campo (Romblon Id. group), Mindanao (Prov.: Zamboanga City), Negros (Prov.: Negros Oriental), Panay, Siquijor, Sulu Archipelago (Jolo, Sitanki).

**General distribution (other than Philippines).** — Smith (1943:444) states that this species is not commonly met in “Indian and Indo-Chinese waters” though it is not uncommon at Singapore. Minton (1975:26, Table 1) suggests that although rare in the Bay of Bengal, it may not be uncommon along the Myanmar coast and the west coast of the Malaysian Peninsula. Also coastal waters of Thailand, Malaysia, western Indonesia as far east as Polynesia and north along the east Asian coast to southern Japan.
**Conservation Status [IUCN].** — Least Concern [2016] ver. 3.1.

*Laticauda laticaudata* (Linnaeus, 1758)  
Brown-lipped Sea Krait; Black-banded Sea Krait

*Coluber laticaudatus* Linnaeus, 1758:222 (part).

**Type Locality and Type Specimen(s).** — “In Indiis”. Lectotype: NHR Lin-87, designated by Stejneger (1907a:402) (see Wallach et al. [2014:356]).

**Philippine Distribution** (Map 20A [p. 131]). — [coastal waters of the islands of] Babuyan Ids. (Calayan), Bantayan, Gato, Jolo, Luzon, Mindanao, Mindoro [northern], Samar, Sulu Archipelago (Jolo).

**General Distribution (Other than Philippines).** — Smith (1943:443) states that it is “rare in the Oriental region (Calcutta and Little Nicobar Harbour).” On the other hand, Minton (1975:26, table 1) suggests that although rare in the Bay of Bengal, it may not be uncommon along the west coast of the Malayan Peninsula. Also western Indonesia (Sumatra and Java) to Australia, Melanesia and Polynesia, and north along the east coast of Asia to southern Japan. (See Wallach et al., 2014:356 for a summary of its reported distribution.)

**Conservation Status [IUCN].** — Least Concern [2016] ver. 3.1.

*Laticauda semifasciata* (Reinwardt in Schlegel, 1837)  
Half-banded Sea Krait

*Platurus semifasciatus* Reinwardt in Schlegel, 1837b:516.


**Type Locality and Type Specimen(s).** — Moluccas. Holotype: RMNH 1468 (see also comments by Stejneger [1907a:409]).

**Philippine Distribution** (Map 20B [p. 131]). — [coastal waters of the islands of] Babuyan Ids. (Babuyan Claro), Bohol, Capones, Cuyo, Gato, Luzon (Prov.: Zambales [coast of]), Negros (Prov.: Negros Oriental), Palawan, Sulu Id., Visayas (see David and Ineich [1999:125] and Wallach [2014:592]).

**General Distribution (Other than Philippines).** — China, Taiwan, Japan, Russia, Indonesia *(fide* David and Ineich [1999:125]; Rasmussen et al. [2011:9]; Wallach et al. [2014:592]).

**Remarks.** — We know of no recent genomic data to evaluate the status of the generic affiliation of *Laticauda semifasciata* or its congener, *L. schistorhynchus*. Based on morphological considerations, Kharin (1984) proposed the genus *Pseudolaticauda* to accommodate these two species, and this arrangement has been recognized by Wallach et al. (2014:592). However, we note that Rasmussen et al. (2011:9) retain this species in *Laticauda*, as did David and Ineich (1999:125) for reasons given, and we herein accept this assignment.

**Conservation Status [IUCN].** — Least Concern [2016] ver. 3.1.
Family Viperidae Oppel, 1811
Subfamily Crotalinae Oppell, 1811

Trimeresurus (Parias) flavomaculatus (Gray, 1842)  
Photo figures 104–109

Philippine Pit Viper

Magaera flavomaculata Gray, 1842:49.
Parias flavomaculata, Gray, 1849:11.
Trimeresurus halieus Griffin 1910:214 (type locality: Polillo Islands).— Taylor, 1922a:286.
Parias cf. flavomaculatus, Oliveros, Ota, Crombie, and Brown, 2011:16, figs. 8B, 8C.
Trimeresurus schadenbergi Fischer, 1885:116 (type locality: “Süd-Mindanao”).
Trimeresurus cf. flavomaculatus, Sanguila, Cobb, Siler, Diesmos Alcala, and Brown, 2016:107, fig. 78.

Type locality and type specimen(s).— Luzon Id., Philippines (restricted by Leviton, 1964c:260). Lectotype: BMNH 1946.1.19.34 (formerly BMNH i.3.1a), designated by Iskandar and Colijn (2001:158).


General distribution (other than Philippines).— Endemic to the Philippines.
Conservation status [IUCN].— Least Concern [2016] ver. 3.1.

Trimeresurus (Parias) mcgregori (Taylor, 1919)  
Photo figure 110–113
McGregor’s Philippine Pitviper


**Type Locality and Type Specimen(s).**— Batan Id., Batanes Group, off northern Luzon Id., Philippines. Holotype: PNM 748 (destroyed during WWII); Neotype: CAS 60525, designated by Leviton (1964c:261).

**Philippine Distribution (Endemic)** (Map 36A [p. 147]).— Babuyan Ids. (Calayan, Camiguin Norte), Batan Id.

**Conservation Status [IUCN].**— Data Deficient [2016] ver. 3.1.

Trimeresurus (Parias) schultzei (Griffin, 1909)

Schultz’s Philippine Pitviper


**Type Locality and Type Specimen(s).**— Palawan [Iwahig]. Holotype: PNM 315 (destroyed during WW II).

**Philippine Distribution (Endemic)** (Map 36B [p. 147]).— Balabac, Palawan.

**Conservation Status [IUCN].**— Least Concern [2016] ver. 3.1.

Tropidolaemus philippensis (Gray, 1842)

Philippine Temple Pitviper

Tropidolaemus philippensis Gray, 1842:48.— Taylor, 1922a:295, pl. 37, fig.1.

Tropidolaemus hombronii Guichenot in Jacquinot and Guichenot [q.v.], 1853:23, pl. 2, fig. 3.


**Type Locality and Type Specimen(s).**— Philippines. Holotype: BMNH 1946.1.17.67 (fide Vogel et al. [2007:31]).

**Philippine Distribution (Endemic)** (Map 36C [p. 147]).— Dinagat, Leyte, Mindanao (Prov.: Agusan del Norte, Bukidnon, Cotabato, Davao City, Davao del Norte, Misamis Oriental), Samar.

**Remarks.**— Tropidolaemus philippensis and T. subannulatus were formerly included in the ubiquitous species T. wagleri, but the assignment was seriously questioned by David and Ineich (1999:295–296). Indeed, recent studies have demonstrated that several recognizable species have been inappropriately parading under the nominal taxon T. wagleri, T. philippensis among them, as well as populations known from southern Mindanao and the Zamboanga Peninsula. On the large and topographically diverse island of Mindanao, and on careful examination, the Zamboanga population appears to be quite distinct from populations inhabiting other parts of the island, although Vogel et al. (2007) referred it to T. philippensis. Recent unpublished studies by Brown et al. suggest otherwise, and it is likely that the taxon T. hombronii (type locality, Zamboanga) will have to be resurrected from the synonymy of T. philippensis to accommodate the Zamboanga and, possibly, the...
Basilan populations. Furthermore, recently documented populations of tropidolaemids found on Leyte, Dinagat, Samar, and northeast Mindanao bear strong resemblances to *T. philippensis* but also to *T. subannulatus* (see Vogel et al. [2007:30, fig. 24] from Negros; also figs. 79–80 in Sanguila et al. [2016]). We have refrained from suggesting any changes at this time because this too is said to be under study by Vogel and David (see also remarks under *Trimeresurus [Parias] flavomaculatus* and *Tropidolaemus subannulatus*). For additional details, see Leviton, Brown, and Siler (2014:518 and figs. 52B, E–F).

**Conservation status [IUCN].—** The conservation status of *Tropidolaemus philippensis* has not been assessed for the IUCN Red List [2016] ver. 3.1, but IUCN notes that it is listed in the *Catalogue of Life*.

*Tropidolaemus subannulatus* (Gray, 1842)

Philippine Temple Pitviper; Northern Philippine Temple Pit Viper; Bornean Keeled Green Pit Viper


*Trimeresurus wagleri wagleri* Taylor, 1922c:302.


**Type locality and type specimen(s).—** Philippines. Syntypes (2): BMNH 1946.1.19.32–33 (formerly BMNH i.2.7a).

**Philippine distribution** (Map 36D [p. 147]).— Balabac; Basilan, Bohol, Dinagat, Leyte, Luzon (Prov.: Albay, Bulacan, Cavite, Cagayan, Camarines Norte, Isabela, Laguna, Quezon), Mindanao (Prov.: Agusan del Norte, Agusan del Sur, Lanao del Norte, Misamis Oriental, Zamboanga City), Negros (Prov.: Negros Occidental, Negros Oriental), Palawan, Panay (Prov.: Alkan, Antique), Samar, Sulu Archipelago (Jolo, Siasi, Sibutu, Tawi-Tawi), Tumindao.

**General distribution (other than Philippines).—** Malaysia (Borneo [Sabah, Sarawak]); Indonesia (Belitung, Borneo [Kalimantan], Buton, Kalimantan, Sangihe Archipelago, Sulawesi) (see Vogel, et al. [2007:23, 31] for details).

**Remarks.**— Given the variation observed among samples of this species studied by Vogel et al. (2007), they concluded, “We refrain from giving a more detailed description here, as the variation among this species or complex of species will be discussed in the next and forthcoming paper of the series. A splitting into several taxa seems to be likely.” (Vogel et al., 2007:23). As noted by Gaulke (1994:141), these seemingly non-aggressive but dangerously venomous snakes are actually beneficial to humans because their dietary preferences include agricultural pest species, rodents, and even large rats.

**Conservation status [IUCN].—** Least Concern [2016] ver. 3.1.
**General geographic distribution of snakes in the Philippine Archipelago**

<table>
<thead>
<tr>
<th>Azucar</th>
<th>Babuyan Claro (Babuyan Ids.)</th>
<th>Balabac</th>
<th>Basilan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><em>Tropidonophis negrosensis</em></td>
<td></td>
<td><em>Indotyphlops braminus</em></td>
</tr>
<tr>
<td></td>
<td><em>Boiga philippina</em></td>
<td></td>
<td><em>Rhamphotyphlops olivaceus</em></td>
</tr>
<tr>
<td></td>
<td><em>Lycodon cf. alcalai</em></td>
<td></td>
<td><em>Rhamphotyphlops sulfineus</em></td>
</tr>
<tr>
<td></td>
<td><em>Lycodon bibionius</em></td>
<td></td>
<td><em>Malayopython reticulatus</em></td>
</tr>
<tr>
<td></td>
<td><em>Laticauda colubrina</em></td>
<td></td>
<td><em>Aplopeltura boa</em></td>
</tr>
<tr>
<td></td>
<td><em>Laticauda semifasciata</em></td>
<td></td>
<td><em>Ahaetulla prasina preocularis</em></td>
</tr>
<tr>
<td></td>
<td><em>Trimeresurus (Parias) cf. flavomaculatus</em></td>
<td></td>
<td><em>Boiga cynodon</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Calamaria gervaisi hollandi</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Calamaria lumbricoidea</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Chrysopelea paradisi variabilis</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Coelognathus erythrurus erythrurus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Dendrelaphis marenaea</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Oxyrhabdium modestum</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Psammodynastes pulverulentus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Rhabdophis auriculatus myersi</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Rhabdophis linearis</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Tropidonophis dendrophiops</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Tropidolaemus subannulatus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Batan (Batanes Ids.)</em></td>
</tr>
<tr>
<td></td>
<td><em>Psammodynastes pulverulentus</em></td>
<td></td>
<td><em>Indotyphlops braminus</em></td>
</tr>
<tr>
<td></td>
<td><em>Rhabdophis chrysargos</em></td>
<td></td>
<td><em>Python reticulatus</em></td>
</tr>
<tr>
<td></td>
<td><em>Calliophis bilineata</em></td>
<td></td>
<td><em>Ahaetulla prasina preocularis</em></td>
</tr>
<tr>
<td></td>
<td><em>Ophiophagus hannah</em></td>
<td></td>
<td><em>Coelognathus erythrurus manillensis</em></td>
</tr>
<tr>
<td></td>
<td><em>Trimeresurus (Parias) schultzei</em></td>
<td></td>
<td><em>Gonyosoma oxycephalum</em></td>
</tr>
<tr>
<td></td>
<td><em>Tropidolaemus subannulatus</em></td>
<td></td>
<td><em>Lycodon dumerilli</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Psammodynastes pulverulentus</em></td>
</tr>
<tr>
<td></td>
<td><em>Rhabdophis spilogaster</em></td>
<td></td>
<td><em>Rhabdophis spilogaster</em></td>
</tr>
<tr>
<td></td>
<td><em>Trimeresurus (Parias) mcgregori</em></td>
<td></td>
<td><em>Trimeresurus (Parias) mcgregori</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Biliran</em></td>
</tr>
<tr>
<td></td>
<td><em>Oxyrhabdium modestum</em></td>
<td></td>
<td><em>Calamaria lumbricoidea</em></td>
</tr>
<tr>
<td></td>
<td><em>Pseudorabdion mcnamarae</em></td>
<td></td>
<td><em>Oxyrhabdium modestum</em></td>
</tr>
<tr>
<td></td>
<td><em>Rhabdophis linearis</em></td>
<td></td>
<td><em>Pseudorabdion mcnamarae</em></td>
</tr>
<tr>
<td></td>
<td><em>Tropidonophis dendrophiops</em></td>
<td></td>
<td><em>Rhabdophis linearis</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Biliran</em></td>
</tr>
<tr>
<td></td>
<td><em>Chrysopelea paradisi variabilis</em></td>
<td></td>
<td><em>Gerrhopilus hedraeus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Gerrhopilus manilae</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Indotyphlops braminus</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Rhamphotyphlops cumingii</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><em>Malayopython reticulatus</em></td>
</tr>
<tr>
<td></td>
<td><em>Bantayan</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Acrochordus granulatus</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Cerberus schneiderii</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Chrysopelea paradisi variabilis</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Dendrelaphis marenae</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Lycodon capucinus</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Laticauda colubrina</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Laticauda laticaudata</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Bohol</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Coelognathus erythrurus manillensis</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Laticauda colubrina</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Bantayatabat</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cerberus schneideri
Aplopeltura boa
Ahaetulla prasina preocularis
Boiga angulata
Boiga cynthia
Calamaria lumbricoidea
Coelognathus erythrus erythrus
Dendrelaphis marenae
Dendrelaphis philippinensis
Gonyosoma oxycephalum
Lycodon capucinus
Oxyrhabdium modestum
Psammodynastes pulverulentus
Rhabdophis auriculatus myersi
Rhabdophis lineatus
Tropidonophis dendrophiops
Naja samarensis
Ophiophagus hannah
Laticauda colubrina
Laticauda semifasciata
Tropidolaemus subannulatus

Bongao (Sulu Archipelago)
Indotyphlops braminus
Malayopython reticulatus
Xenopeltis unicolor
Ahaetulla prasina suluensis
Chrysopelea paradisi variabilis
Coelognathus philippinus
Dendrelaphis flavescens
Dendrelaphis marenae
Gonyosoma oxycephalum
Oligodon meyerinkii
Psammodynastes pulverulentus

Boracay (off of Panay)
Indotyphlops braminus
Malayopython castanotus

Bubuan (Sulu Archipelago)
Raphophis olivaceus
Raphophis suluensis
Chrysopelea paradisi variabilis
Dendrelaphis flavescens
Liopeltis tricolor
Oligodon vertebralis notospilus

Busuanga (Calamian Archipelago)
Indotyphlops braminus
Ahaetulla prasina prasina
Coelognathus philippinus
Dendrelaphis marenae

Cagayan Sulu (Sulu Archipelago)
Calamaria suluensis
Dendrelaphis marenae

Calamian Ids. (see also Calauit)
Malayopython reticulatus
Acrochordus granulatus
(?!) Pseudorabdion oxycephalum

Calauit (Calamian Archipelago)
Indotyphlops braminus
Malayopython reticulatus
Acrochordus granulatus
Ahaetulla prasina prasina
Dendrelaphis caudolineatus caudolineatus
Dendrelaphis marenae
Coelognathus philippinus
Liopeltis philippinus
Oligodon notospilus
Calliophis bilineata
Naja sumatra

Calayan (Babuyan Ids.)
Malayopython reticulatus
Boiga dendrophila divergens
Chrysopelea paradisi variabilis
Coelognathus erythrus manillensis
Cyclocorus lineatus lineatus
Dendrelaphis luzonensis
Gonyosoma oxycephalum
Lycodon cf. alcalai
Oxyrhabdium leporinum leporinum
Laticauda colubrina
Laticauda laticaudata
Trimeresurus (Parias) cf. flavomaculatus

Camiguin (unspecified Norte or Sur)
Indotyphlops braminus
Chrysopelea paradisi variabilis
Dendrelaphis marenae
Psammodynastes pulverulentus
Tropidonophis dendrophiops
Trimeresurus (Parias) flavomaculatus
<table>
<thead>
<tr>
<th>Location</th>
<th>Snakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camiguin Norte (Babuyan Ids.)</td>
<td><em>Trimeresurus</em> (<em>Parias</em>) <em>mcgregori</em>, <em>Indotyphlops</em> <em>braminus</em>, <em>Malayotyphlops</em> * luzonensis*, <em>Malayotyphlops</em> <em>ruficaudus</em>, <em>Ahaetulla prasina preocularis</em>, <em>Boiga cynodon</em>, <em>Calamaria gervaisii</em>, <em>Cyclocorus</em> <em>lineatus lineatus</em>, <em>Gonyosoma</em> <em>oxycephalum</em>, <em>Lycodon</em> cf. <em>alcalai</em>, <em>Lycodon</em> <em>bibionius</em>, <em>Lycodon</em> <em>chrysoprateros</em>, <em>Rhabdophis</em> <em>spilogaster</em>, <em>Trimeresurus</em> (<em>Parias</em>) cf. <em>flavomaculatus</em></td>
</tr>
<tr>
<td>Camiguin Sur</td>
<td><em>Ahaetulla prasina preocularis</em>, <em>Calamaria gervaisii</em>, <em>Cyclocorus</em> <em>lineatus lineatus</em>, <em>Gonyosoma</em> <em>oxycephalum</em>, <em>Lycodon</em> <em>flavomaculatus</em>, <em>Rhabdophis</em> <em>spilogaster</em>, <em>Trimeresurus</em> (<em>Parias</em>) cf. <em>flavomaculatus</em></td>
</tr>
<tr>
<td>Camotes Ids. (see Pacijan, Poro)</td>
<td><em>Boiga cynodon</em>, <em>Calamaria gervaisii</em>, <em>Cyclocorus</em> <em>lineatus lineatus</em>, <em>Gonyosoma</em> <em>oxycephalum</em>, <em>Lycodon</em> <em>flavomaculatus</em>, <em>Rhabdophis</em> <em>spilogaster</em>, <em>Trimeresurus</em> (<em>Parias</em>) cf. <em>flavomaculatus</em></td>
</tr>
<tr>
<td>Candaraman</td>
<td><em>Ahaetulla prasina preocularis</em>, <em>Calamaria gervaisii</em>, <em>Cyclocorus</em> <em>lineatus lineatus</em>, <em>Gonyosoma</em> <em>oxycephalum</em>, <em>Lycodon</em> <em>flavomaculatus</em>, <em>Rhabdophis</em> <em>spilogaster</em>, <em>Trimeresurus</em> (<em>Parias</em>) cf. <em>flavomaculatus</em></td>
</tr>
<tr>
<td>Capones</td>
<td><em>Laticauda</em> <em>semifasciata</em></td>
</tr>
<tr>
<td>Carabao</td>
<td><em>Calamaria gervaisii gervaisii</em>, <em>Dendrelaphis</em> <em>marenai</em>, <em>Lycodon</em> <em>capucinus</em></td>
</tr>
<tr>
<td>Catanduanes</td>
<td><em>Malayopython</em> <em>reticulatus</em>, <em>Cerberus</em> <em>schneiderii</em>, <em>Boiga</em> <em>angulata</em>, <em>Boiga</em> <em>dendrophila</em> <em>latifasciata</em>, <em>Calamaria gervaisii gervaisii</em>, <em>Cyclocorus</em> <em>lineatus lineatus</em>, <em>Dendrelaphis</em> <em>marenai</em>, <em>Dendrelaphis</em> <em>philippinensis</em>, <em>Hologerrhum</em> <em>philippinum</em>, <em>Lycodon</em> <em>muelleri</em>, <em>Oxyrhabdium</em> <em>modestum</em></td>
</tr>
<tr>
<td>Cebu</td>
<td><em>Gerrhopilus</em> <em>hederaeus</em>, <em>Indotyphlops</em> <em>braminus</em>, <em>Malayotyphlops</em> <em>hypogius</em>, <em>Malayotyphlops</em> <em>luzonensis</em>, <em>Rampophis</em> <em>cumingii</em>, <em>Malayopython</em> <em>reticulatus</em>, <em>Acrochordus</em> <em>granulatus</em>, <em>Cerberus</em> <em>schneiderii</em>, <em>Ahaetulla prasina preocularis</em>, <em>Calamaria gervaisii</em>, <em>Chrysopelea</em> <em>paradisi variabilis</em>, <em>Coelognathus</em> <em>erythrus erythrus</em>, <em>Cyclocorus</em> <em>lineatus alcalai</em>, <em>Dendrelaphis</em> <em>fuliginosus</em>, <em>Dendrelaphis</em> <em>marenai</em>, <em>Dendrelaphis</em> <em>philippinensis</em>, <em>Lycodon</em> <em>capucinus</em>, <em>Oxyrhabdium</em> <em>leporinum visayanum</em>, <em>Psammodynastes</em> <em>pulverulentus</em>, <em>Pseudorabdion</em> <em>menamarae</em>, <em>Pseudorabdion</em> <em>montanum</em>, <em>Pseudorabdion</em> <em>oxycephalum</em>, <em>Tropidonophis</em> <em>negrosensis</em>, <em>Hemibungarus</em> <em>gemianulis</em>, <em>Ophiophagus</em> <em>hannah</em>, <em>Hydrophis</em> <em>cyanocinctus</em>, <em>Laticauda</em> <em>colubrina</em>, <em>Laticauda</em> <em>laticaudata</em></td>
</tr>
<tr>
<td>Coron (Calamian Archipelago)</td>
<td><em>Ahaetulla prasina prasina</em>, <em>Dendrelaphis</em> <em>philippinensis</em>, (?) <em>Dryophiops</em> <em>rubescens</em></td>
</tr>
<tr>
<td>Culion (Calamian Archipelago)</td>
<td><em>Ahaetulla prasina prasina</em>, <em>Boiga</em> <em>cynodon</em>, <em>Coelognathus</em> <em>philippinus</em>, <em>Dendrelaphis</em> <em>marenai</em>, <em>Liopeltis</em> <em>philippinus</em>, <em>Oligodon</em> <em>perkinsi</em>, <em>Rhabdophis</em> <em>chrysargos</em>, <em>Sibynophis</em> <em>bivittatus</em></td>
</tr>
</tbody>
</table>
Calliophis bilineata
Naja sumatrana

Cuyo
Cerberus schneiderii
Lycoodon capucinus
Laticauda semifasciata

Dalupiri (Babuyan Ids.)
Indotyphlops braminus
Malayotyphlops luzonensis
Python reticulatus
Boiga philippina
Chrysopelea paradisi variabilis
Coelognathus erythrurus manillensis
Dendrelaphis luzonensis
Lycoodon chrysoprateros
Laticauda colubrina
Trimeresurus (Parias) cf. flavomaculatus

Dinagat
Cerberus schneiderii
Ahaetulla prasina preocularis
Boiga cynodon
(?) Boiga dendrophila latifasciata
Calamaria lumbricoidea
Calliophis salitan
Chrysopelea paradisi variabilis
Gonyosoma oxycephalum
Lycoodon dumerilii
Oxyrhadium modestum
Psammodynastes pulverulentus
(?) Pseudorabdion oxycephalum
Rhabdophis lineatus
Stegonotus muelleri
Tropidonophis dendrophiops
Naja samarensis
Ophiophagus hannah
(?) Tropidolaemus philippensis
(?) Tropidolaemus subannulatus

Dumaran
Sibynophis bivittatus

Gato
Laticauda laticaudata
Laticauda semifasciata

Gigantes (off of Panay)
Hydrophis [Chitulia] lamberti
Hydrophis [Pelamis] platurus

Gigantes Sur (off of Panay)
Indotyphlops braminus
Hydrophis [Chitulia] ornatus
Hydrophis [Astrotia] stokesii

Guimaras
Indotyphlops braminus
Acrochordus granulatus
Coelognathus erythrurus psephenourus
Cyclocorus lineatus alcald
Dendrelaphis marenæ
Dendrelaphis philippinensis
Hemibungarus gemianulus

Inampulugan
Malayotyphlops castanotus
Boiga cynodon
Coelognathus erythrurus psephenourus
Cyclocorus lineatus alcald

Itbayat
Lycoodon muelleri
Malayopython reticulatus

Ivojos (Babuyan Ids.)
Indotyphlops braminus

Jolo (Sulu Archipelago)
Indotyphlops braminus
Malayopython reticulatus
Xenopeltis unicolor
Cerberus schneiderii
Ahaetulla prasina preocularis
Calamaria joloensis
Chrysopelea paradisi variabilis
Coelognathus erythrurus erythrurus
Dendrelaphis marenæ
Oligodon meyerinkii
Psammodynastes pulverulentus
Calliophis sulensis
Ophiophagus hannah
Hydrophis [Pelamis] platurus
Laticauda colubrina
Laticauda laticaudata
Trimeresurus (Parias) flavomaculatus
Tropidolaemus subannulatus

Kalotkot
Chrysopelea paradisi variabilis
Dendrelaphis marenæ
Dendrelaphis philippinensis
Leyte

Malayopython reticulatus
Aplopeltura boa
Ahaetulla prasina preocularis
Boiga angulata
Boiga cynodon
Boiga dendrophila latifasciata
Calamaria lumbricoidea
Chrysopelea paradisi variabilis
Coelognathus erythrurus erythrurus
Cyclocorus nuchalis taylori
Dendrelaphis marenai
Dendrelaphis philippinensis
Gonyosoma oxycephalum
Lycodon capucinus
Lycodon dumerilii
Oxyrhabdiam modestum
Psammodynastes pulverulentus
Ptyas luzonensis
Rhabdophis auriculatus auriculatus
Rhabdophis lineatus
Stagonotus muelleri
Tropidonophis dendrophiops
Naja samarensis
Ophiophagus hannah
Trimeresurus (Parias) flavomaculatus
(?) Tropidolaemus philippensis
(?) Tropidolaemus subannulatus

Lubang

Malayopython reticulatus
Cyclocorus lineatus lineatus
Gonyosoma oxycephalum
Rhabdophis spilogaster

Luzon

Gerrhopilus manilae
Acutotyphlops banaorum
Indotyphlops braminus
Malayotyphlops andyi
Malayotyphlops collaris
Malayotyphlops denrorum
Malayotyphlops luzonensis
Malayotyphlops ruber
Malayotyphlops ruficaudus
Malayotyphlops reticulatus
Acrochordus granulatus
Cerberus microlepis
Cerberus schneiderii
(?) Gerarda prevostiana
Ahaetulla prasina preocularis

Mabag (Babuyan Ids.)

Hydrophis atriceps
Hydrophis [Lapemis] curtus
Hydrophis cyanocinctus
Hydrophis [Chitulia] lamberti
Hydrophis [Chitulia] ornatus
Hydrophis [Pelamis] platurus
Hydrophis [Leioselama] semperi
Microcephalophis gracilis
Laticauda colubrina
Laticauda laticaudata
Laticauda semifasciata
Trimeresurus (Parias) flavomaculatus
Tropidolaemus subannulatus

Boiga angulata
Boiga cynodon
Boiga dendrophila diversgens
Boiga drapiezii ssp.
Boiga philippina
Calamaria bitorques
Calamaria gervaisii gervaisii
Chrysopelea paradisi variabilis
Coelognathus erythrurus manillensis
Cyclocorus lineatus lineatus
Dendrelaphis luzonensis
Dendrelaphis marenai
Dendrelaphis philippinensis
Dryophis philippina
Gonyosoma oxycephalum
Hologerrhum philippinum
Lycodon capucinus
Lycodon muelleri
Lycodon solivagus
(?) Lycodon tessellatus
Myersophis alpestris
Oligodon ancorus
Oligodon modestus
Oxyrhabdium leporinum leporinum
Psammodynastes pulverulentus
Pseudorabdion mcnamarae
(?) Pseudorabdion oxycephalum
Ptyas luzonensis
Rhabdophis auriculatus auriculatus
Rhabdophis barbouri
Rhabdophis spilogaster
Hemibungarus calligaster
Hemibungarus meclungi
Naja philippinensis
Ophiophagus hannah
Hydrophis atriceps

Hydrophis [Lapemis] curtus
Hydrophis cyanocinctus
Hydrophis [Chitulia] lamberti
Hydrophis [Chitulia] ornatus
Hydrophis [Pelamis] platurus
Hydrophis [Leioselama] semperi
Microcephalophis gracilis
Laticauda colubrina
Laticauda laticaudata
Laticauda semifasciata
Trimeresurus (Parias) flavomaculatus
Tropidolaemus subannulatus
Marinduque

- Indotyphlops braminus
- Malayopython reticulatus
- Gerrhopilus hedraeus
- Malayotyphlops luzonensis
- Malayopythlops ruficaudus
- Ramphotyphlops cumingii
- Ahaetulla prasina preocularis
- Cyclolurus lineatus lineatus
- Dendrelaphis luzonensis
- Dendrelaphis marenae
- Dryophiops philippinensis
- Gonyosoma oxycephalum
- Hologerrhum philippinum
- Lycodon muelleri
- Oxyhabdium leporinum leporinum
- Naja philippinensis

Malayotyphlops luzonensis

Maripipi

- Oxyhabdium modestum

Marongas

- Chrysopelea paradisi variabilis

Masbate

- Indotyphlops braminus
- Malayopython reticulatus
- Ramphotyphlops cumingii
- Malayopython reticulatus
- Acrochordus granulatus
- Cerberus schneiderii
- Ahaetulla prasina preocularis
- Calamaria gervaisii iridescens
- Chrysopelea paradisi variabilis
- Coelognathus erythrurus psephenourus
- Dendrelaphis fuliginosus
- (?) Dendrelaphis luzonensis
- Dendrelaphis marenae
- Lycodon capucinus
- Pseudorabdion mcnamarae
- Tropidonophis dendrophiops
- Lygodon muelleri
- Pseudorabdion oxycephalum
- (eastern)
- Oligodon maculatus
- (?) Oligodon modestus
- (?) Oligodon notospilus (doubtful)
- Opisthotropis alcalai
- Oxylabdeium modestum
- Psemmendynastes pulverulentus
- Pseudorabdion ater
- (?) Pseudorabdion oxycephalum
- Pseudorabdion taylorti
- Rhabdophis auriculatus auriculatus
- Rhabdophis auriculatus myersi
- (=western)

Medis

- Chrysopelea paradisi variabilis

Mindanao

- Gerrhopilus hedraeus
- Indotyphlops braminus
- (?) Malayotyphlops luzonensis
- Ramphotyphlops cumingii

- (?) Tropidolaemus hombronii
- (?) Tropidolaemus philippensis
- (?) Tropidolaemus subannulatus
Mindoro

*Gerrhopilus hedraeus*
*Indotyphlops braminus*
*Malayotyphlops ruber*
*Malayopython reticulatus*
*Ahaetulla prasina preocularis*
*Calamaria gervaisii gervaisii*
*Chrysopelea paradisi variabilis*
*Coelognathus erythrus manillensis*
*Cyclocorus lineatus lineatus*
*Dendrelaphis fuliginosus*
*Dendrelaphis marenae*
*Dryophiops philippina*
*Lycodon capucinus*
*Lycodon muelleri*
*Oligodon ancorus*
*Oxyrhabdium leporinum leporinum*
*Tropidophis negrosensis*
*Hemibungarus calligaster*
*Naja philippinensis*
*Ophiophagus hannah*
*Laticauda laticaudata*
*Trimeresurus (Parias) flavomaculatus*

**Negros**

*Gerrhopilus hedraeus*
*Indotyphlops braminus*
*Malayotyphlops caulaeonensis*
*Malayotyphlops castanotus*
*Malayotyphlops luzonensis*
*Malayotyphlops ruficaudus*
*Ramphotyphlops cumingii*
*Malayopython reticulatus*
*Acrochordus granulatus*
*Boiga cycodon*
*Calamaria gervaisii iridiscens*
*Chrysopelea paradisi variabilis*
*Coelognathus erythrurus psephenourus*
*Cyclocorus lineatus aelalai*
*Dendrelaphis fuliginosus*
*Dendrelaphis marenae*
*Dryophiops philippina*
*Gonyosoma oxycephalum*
*Lycodon capucinus*
*Oligodon modestus*
*Oxyrhabdium leporinum visayanum*
*Oxyrhabdium modestum*
*Psammodynastes pulverulentus*
*Psammodynastes pulverulentus*
Naja sumatrana
Ophiophagus hannah
Laticauda semifasciata
Trimeresurus (Parias) flavomaculatus
Trimeresurus (Parias) shultzii
Tropidolaemus subannulatus

Panay
Indotyphlops braminus
Malayotyphlops castanotus
(?) Malayotyphlops hypogius
Malayopython reticulatus
Acrochordus granulatus
Cerberus schneiderii
Ahaetulla prasina preocularis
Boiga angulata
Boiga cynodon
Boiga dendrophila levitoni
Boiga drapiezii ssp.
Calamaria bitorques
Calamaria gervaisii iridescens
Chrysospelea paradisi variabilis
Coelognathus erythrurus psephenourus
Cyclocorus lineatus alcalai
Dendrelaphis fuliginosus
Dendrelaphis marenae
Dryophiops philippina
Gonyosoma oxycephalum
Hologerrhum dermalii
Lycodon capucinus
Lycodon fausti
Oligodon modestus
Oxyrhahidium modestum
Psammodynastes pulverulentus
Pseudorabdion mcnamarae
Pseudorabdion talonuran
Ptyas luzonensis
Tropidonophis negrosensis
Hemibungarus gemanuluis
Ophiophagus hannah
Laticauda colubrina
Trimeresurus (Parias) flavomaculatus
Tropidolaemus subannulatus

Polillo
Indotyphlops braminus
Ramphotyphlops cunningii
Malayopython reticulatus
Cerberus schneiderii
Ahaetulla prasina preocularis
Boiga angulata
Boiga cynodon
Boiga dendrophila divergens
Calamaria gervaisii polillensis
Chrysospelea paradisi variabilis
Coelognathus erythrurus manillensis
Cyclocorus lineatus lineatus
Dendrelaphis marenae
Dendrelaphis philippinensis
Hologerrhum philippinum
Lycodon muelleri
Psammodynastes pulverulentus
Ptyas luzonensis
Rhabdophis spilogaster
Hemibungarus mcclungi
Ophiophagus hannah
Trimeresurus (Parias) flavomaculatus

Poro (Camotes Ids.)
Malayotyphlops luzonensis
Malayotyphlops ruber
Coelognathus erythrurus erythrurus

Romblon
Cerberus schneiderii
Boiga cynodon
Chrysospelea paradisi variabilis
Dryophiops philippina
Lycodon capucinus
Ophiophagus hannah
Laticauda colubrina

Sabtang (Batanes Ids.)
Ahaetulla prasina preocularis
Gonyosoma oxycephalum
Lycodon alcalai
Psammodynastes pulverulentus

Samar
Indotyphlops braminus
Malayotyphlops ruber
Ramphotyphlops marxi
Ramphotyphlops olivaceus
Malayopython reticulatus

Panubolon (see also Guimaras)
Indotyphlops braminus

Papahag [also as Papahang] (Sulu Archipelago)
Oligodon meyerinkii
<table>
<thead>
<tr>
<th>Location</th>
<th>Snakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semirara (off of Panay)</td>
<td><em>Indotyphlops braimineris</em>, <em>Malayotyphlops luzonensis</em>, <em>Lycodon capucinus</em></td>
</tr>
<tr>
<td>Siargao</td>
<td><em>Malayopython reticulatus</em>, <em>Boiga dendrophila latifasciata</em>, <em>Chrysopelea paradisi variabilis</em>, (?)<em>Cyclocorus nuchalis taylori</em>, <em>Dendrelaphis marenze</em>, <em>Lycodon dumerili</em>, <em>Psammodyastes pulvinatus</em></td>
</tr>
<tr>
<td>Sias (Sulu Archipelago)</td>
<td><em>Malayopython reticulatus</em>, <em>Ahaetulla praefrons suluensis</em></td>
</tr>
<tr>
<td>Sibay (off of Panay)</td>
<td><em>Coelognathus erythrurus erythrurus</em>, <em>Calliophis suluensis</em>, <em>Tropidaeumaus subannulatus</em></td>
</tr>
<tr>
<td>Sibutu (Sulu Archipelago)</td>
<td><em>Rhamphotyphlops olivaceus</em>, <em>Rhamphotyphlops suluensis</em>, <em>Malayopython reticulatus</em>, <em>Ahaetulla praefrons preocularis</em>, <em>Ahaetulla praefrons suluensis</em>, <em>Boiga cynodon</em>, <em>Chrysopelea paradisi paradisi</em>, <em>Coelognathus philippinensis</em>, <em>Dendrelaphis (? caudolineatus)</em>, <em>Oligodon meyerinkii</em>, <em>Hydrophis [Pelamis] platurus</em>, <em>Tropidaeumaus subannulatus</em></td>
</tr>
<tr>
<td>Sibuyan</td>
<td><em>Indotyphlops braimineris</em>, <em>Malayotyphlops ruficuadus</em>, <em>Ramphotyphlops cumingii</em>, <em>Chrysopelea paradisi variabilis</em>, <em>Dryophiops philippina</em>, <em>Gonyosoma oxycephalum</em>, <em>Pseudorabdion mcnarator</em></td>
</tr>
<tr>
<td>Sicogon</td>
<td><em>Rhamphotyphlops cumingii</em>, <em>Tropidaeumaus negrosensis</em></td>
</tr>
<tr>
<td>Siquijor</td>
<td><em>Malayotyphlops luzonensis</em>, <em>Boiga cynodon</em>, <em>Chrysopelea paradisi variabilis</em>, <em>Dendrelaphis marenze</em>, <em>Dryophiops philippina</em>, <em>Tropidaeumaus dendrophiops</em>, <em>Trimeresurus (Parias) flavomaculatus</em></td>
</tr>
<tr>
<td>Sicogon</td>
<td><em>Rhamphotyphlops cumingii</em>, <em>Tropidaeumaus negrosensis</em></td>
</tr>
<tr>
<td>Sitanki (Sulu Archipelago)</td>
<td><em>Laticauda colubrina</em></td>
</tr>
</tbody>
</table>
Sulu Archipelago (unspecified ids.)
- *Calamaria virgulata*
- *Hydrophis atriceps*

Sulu (= Jolo, Sulu Archipelago)
- *Laticauda laticaudata*
- *Laticauda semifasciata*

Surigao
- *Dendrelaphis marenai*
- *Hydrophis* [*Pelamis*] *platurus*

Tablas
- *Indotyphlops braminus*
- *Gerrhopilus hedraeus*
- *Malayotyphlops ruber*
- *Malayotyphlops ruficaudus*
- *Ahaetulla prasina preocularis*
- *Boiga cynodon*
- *Calamaria gervaisii gervaisii*
- *Chrysopelea paradisi variabilis*
- *Coelognathus erythrus psephenourus*
- *Cyclocorus lineatus alcalai*
- *Dendrelaphis marenai*
- *Lycodon capucinus*
- *Oligodon modestus*
- *Pseudorabdion menamarae*

(?) *Hydrophis* [*Leioselasma*] *spiralis*

Tawitawi (Sulu Archipelago)
- *Malayopython reticulatus*
- *Ahaetulla prasina suluensis*
- *Boiga cynodon*
- *Boiga drapiezii ssp.*
- *Chrysopelea paradisi variabilis*
- *Coelognathus philippinensis*
- *Dendrelaphis flavescens*
- *Dendrelaphis marenai*
- *Oligodon meyerinkii*
- *Sibynophis geminatus geminatus*
- *Tropidolaemus subannulatus*

Ticao
(?) *Dendrelaphis luzonensis*

Tumindao
- *Tropidolaemus subannulatus*

Visayan Sea area
- *Hydrophis atriceps*
- *Hydrophis cyanocinctus*
- *Hydrophis* [*Lapemis*] *curtos*
- *Laticauda semifasciata*
BIBLIOGRAPHY


ALCALA, ANGEL C. 1986a. *Amphibians and Reptiles*. JMC Press, Quezon City, Philippines. xiv + 195 pp. [NB: Publication sponsored by Natural Resources Center, Ministry of Natural Resources and the University of the Philippines.]

ALCALA, ANGEL C. 1986b. *Philippine poisonous animals*. Pages 77–158. JMC Press, Quezon City, Philippines. [NB: Publication sponsored by Natural Resources Center, Ministry of Natural Resources and the University of the Philippines.]


BOETTGER, OSKAR. 1886. Aufzählung der von den Philippinen bekannten Reptilien und Batrachier. Berichte über die Senckenbergische Naturforschende Gesellschaft in Frankfurt am Main 1886:91–134. [NB: Taylor (1922:20) comments “Many of the species of snakes are incorrectly included in the list, and many are represented under more than one name. His work is merely a compilation from the works of other authors.”; (snakes, pp. 104–120).]


BOETTGER, OSKAR. 1889. [Moellendorff collection of Philippine reptiles]. Berichte über die Senckenbergische Naturforschende Gesellschaft in Frankfurt am Main 1889:xxvi.

BOETTGER, OSKAR. 1890. [List of reptiles and batrachians from Leyte, Philippine Islands, sent in by Dr. Fr. von Moellendorff]. Berichte über die Senckenbergische Naturforschende Gesellschaft in Frankfurt am Main 1890:xi.iii.

BOETTGER, OSKAR. 1892. [List of Philippine snakes sent in by Dr. Moellendorff]. Berichte über die Senckenbergische Naturforschende Gesellschaft in Frankfurt am Main 1892:xi.x.

BOETTGER, OSKAR. 1893. [Reptiles from Manila]. Berichte über die Senckenbergische Naturforschende Gesellschaft in Frankfurt am Main 1893:xxix.


BOETTGER, OSKAR. 1897b. [Reptiles from Manila, Cebu, Samar, and Culion obtained by Dr. O. Dr. Moellendorff and Otto Koch]. Berichte über die Senckenbergische Naturforschende Gesellschaft in Frankfurt am Main 1897:iv.


BOETTGER, OSKAR. 1905. [List of reptiles from the Philippines]. Berichte über die Senckenbergische Naturforschende Gesellschaft in Frankfurt am Main 1905:170.


gie (12th section of the Bulletin Universal des Sciences et de l’Industrie) 9:233–240. (Published by Schlegel, Hermann, 1826 [q.v.] following Boie’s death.)


BOSCH, HERMAN A. J. IN DEN. (see in den Bosch, H.A.J.)


BROWN, RAIFE M., ALAN E. LEVITON, JOHN W. FERNER, AND ROGELIO V. SISON. 2001. A new snake of the genus Hologerrhum Günther (Reptilia; Squamata; Colubridae) from Panay Island, Philippines. Asiatic Her-


CASTOE, TODD A., ERIC N. SMITH, RAIFE M. BROWN, AND CHRISTOPHER L. PARKINSON. 2007. Higher-level phylogeny of Asian and American coralsnakes, their placement within the Elapidae (Squamata), and the sys-


**Guichenot, Alphonse.** 1853. (see Jacquinot, Honoré, and Alphonse Guichenot. 1853)


**Guichenot, Alphonse.** 1853. (see Jacquinot, Honoré, and Alphonse Guichenot. 1853)


[NB: Includes a key to identify all species included by Lanza in the genus Lycodon.]


LEVITON, ALAN E. 1964c. Contributions to a review of Philippine snakes, V. The snakes of the genus


LUTZ, MARIO. 2006. Die Kobras des Philippinischen Archipels. Teil I: Die Philippinen-Kobra, Naja...


PETERS, WILHELM CARL HARTWEG. 1862a. Präparate von zur cranioiologischen Unterscheidung der Schlangen-
gattung *Elaps* und machte eine Mittheilung über eine neue Art der Gattung *Simotes, S. semicinctus*. 


PETERS, WILHELM CARL HARTWEG. 1872a. Über drei neue Schlangenarten (*Calamaria bitorques, Stenog- 


PETERS, WILHELM CARL HARTWEG. 1881. Über die Verschiedenheit von *Syngnathus* (*Belonichthys* zam- 


son, ed., *The Biology of Sea Snakes*. University Park Press, Baltimore, Maryland, USA.

PYRON, R. ALEXANDER, FRANK T. BURBRINK, GUARINO R. COLLI, ADRIAN NIETO MONTES DE OCA, LAURIE J. VITT, CAITLIN A. KUCZYNSKI, AND JOHN J. WIENS. 2011. The phylogeny of advanced snakes (Colu- 


PYRON, R. ALEXANDER, FRANK T. BURBRINK, AND JOHN J. WIENS. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13(93): 

26–53.


RASMUSSEN, ARNE REDSTED, JOHAN ELMBERG, PETER GRAVLUND, AND IVAN INECH. 2011. Sea snakes (Serpentes: subfamilies Hydrophiinae and Laticaudinae) in Vietnam: a comprehensive checklist and an


[NB: Cover date June 1955 but published 27 December 1956.]


**Roel, Nelly de (Petronella Johanna de).** (see as de Rooij, Nelly) **Rooijan, Johan van (see as van Rooijan, Johan) Rosén, Nils Valfrid.** 1905. List of snakes in the Zoological Museum of Lund and Malmö, with descriptions of new species and a new genus. *Annals and Magazine of Natural History* 15:168–181.


**Russell, Patrick.** 1796. *An Account of Indian Serpents collected on the Coast of Coromandel; containing Descriptions and Drawings of Each Species, together with Experiments and Remarks on their Several Poisons*. George Nicol, London, England, UK. vii + 91 pp., 46 pls. [NB: for additional information about this publication see Adler, Kraig (2015), also Bauer, Aaron (2015).]


**Salafranca, E.S.** 1967. Longevity of *Naja naja philippinensis* under stress of venom extraction. *Zoologica* 52:41–47.


SCHLEGEL, HERMANN. 1837a. Essai sur la Physionomie des Serpens, Partie Générale. Arnz & Comp., Leide. i–xxvii + 1–251 [+ i–xv + (1)] pp. (NB: Index, pp. i–xv may be bound with Partie Générale or Partie Descriptive.)

SCHLEGEL, HERMANN. 1837b. Essai sur la Physionomie des Serpens, Partie Descriptive. Arnz & Comp., Leide. 1–606 [+ i–xv + (1)] pp. (NB: Index, pp. i–xv may be bound with Partie Générale or Partie Descriptive.)


SCHNEIDER, JOHANN GOTTLLOB THEAENUS. 1799. Historiae Amphibiorum naturalis et literariae. Fasciculus Primus continens Ranas, Calamitas, Bufones, Salamandras et Hydros in generis et species descripsit notisque suis distinctos. Friederici Formmanni, Ienae [=Jena], Germany. xiii + (1) + 364 + (2) pp., 2 pls.

SCHNEIDER, JOHANN GOTTLLOB THEAENUS. 1801. Historiae amphibiorum naturalis et literariae. Fasciculus secundus continens Crocodylos, Scincos, Chamaeauras, Boas, Pseudoboas, Elapes, Angues, Amphibianaen et Caeclias, Friederici Formmanni, Ienae [=Jena], Germany, vi + 374 pp., 2 pls.


TAYLOR, EDWARD H. 1922a. The Snakes of the Philippine Islands. Bureau of Science, Manila, Philippines. 312 pp., 32 text-figs., 63 tables, 37 pls.


135–146.

[NB: Snakes, pp. 137–143; no Philippine records.]


also Wiegmann’s “Nachträgliche Bemerkungen” chapter, numbered in Nova Acta as 268a–d. Original description and pl. of Elaps calligaster (pl. 59, fig. 2 [pl. 20, fig. 2 in Nova Acta], pls. 52–61).


[NB: According to Bauer and Adler (2001), preprints of this paper were included in F.J.F. Meyen (1834), Reise um die Erde (q.v.) and then issued in the Nova Acta, also in 1834, though somewhat later (but not much since Meyen signed the foreword to the book [pp. iii-iv] on 15 Sept. 1834).]


Appendix

Distribution Maps and Photographs
Distribution maps (pages 510–546) arranged alphabetically by genus and species;
Map sheets numbered 1–37 (145 maps)

Photo figures (pages 547-568) numbered sequentially 1–119 and ordered by Superfamily,
Family, and Subfamily groups and within the groups, alphabetically by genus and species
MAP 1. Topographic base map for the Philippine Archipelago.
MAPS 2A–D. Geographic range maps for Philippine records of (A) *Acrochordus granulatus*; (B) *Acutotyphlops banaorum*; (C) *Ahaetulla prasina prasina*; (D) *Ahaetulla prasina preocularis*.
MAPS 3A–D. Geographic range maps for Philippine records of (A) *Ahaetulla prasina suluensis*; (B) *Aplopetura boa*; (C) *Boiga angulata*; (D) *Boiga cynodon*.
Maps 4A–D. Geographic range maps for Philippine records of (A) *Boiga dendrophila divergens*; (B) *Boiga dendrophila latifasciata*; (C) *Boiga dendrophila levitoni*; (D) *Boiga dendrophila multicincta*. 
Maps 5A–D. Geographic range maps for Philippine record of: (A) Boiga philippina; (B) Boiga schultzei; (C) Calamaria bitorques; (D) Calamaria gervaisii gervaisii.
Maps 6A–D. Geographic range maps for Philippine records of (A) *Calamaria gervaisii hollandi*; (B) *Calamaria gervaisii iridescens*; (C) *Calamaria gervaisii polillensis*; (D) *Calamaria joloensis*.
Maps 7A–D. Geographic range maps for Philippine records of (A) Calamarialumbricoidea; (B) Calamaria palavanensis; (C) Calamaria suluensis; (D) Calamaria virgulata.
MAPS 8A–D. Geographic range maps for Philippine records of (A) Calliophis bilineata; (B) Calliophis philippina; (C) Calliophis salitan; (D) Calliophis suluensis.
Maps 9A–D. Geographic range maps for Philippine records of (A) Cerberus microlepis; (B) Cerberus schneiderii; (C) Chrysopelea paradisi paradisi; (D) Chrysopelea paradisi variabilis.
Maps 10A–D. Geographic range maps for Philippine records of (A) *Coelognathus erythrurus erythrurus*; (B) *Coelognathus erythrurus manillensis*; (C) *Coelognathus erythrurus psephenourus*; (D) *Coelognathus philippinus*. 
MAPS 11A–D. Geographic range maps for Philippine records of (A) *Cyclocorus lineatus alcalai*; (B) *Cyclocorus lineatus lineatus*; (C) *Cyclocorus nuchalis nuchalis*; (D) *Cyclocorus nuchalis taylori*. 
Maps 12A–D. Geographic range maps for Philippine records of (A) *Dendrelaphis flavescens*; (B) *Dendrelaphis fuliginosus*; (C) *Dendrelaphis levitoni*; (D) *Dendrelaphis luzonensis*. 
MAPS 13A–D. Geographic range maps for Philippine records of (A) *Dendrelaphis marenae*; (B) *Dendrelaphis philippinensis*; (C) *Dryocalamus philippinus*; (D) *Dryophiops philippina*.
Maps 14A–D. Geographic range maps for Philippine records of (A) Dryophiops rubescens; (B) Emydcephalus annulatus; (C) Gerarda prevostiana; (D) Gerrhopilus hedraeus.
Maps 15A–D. Geographic range maps for Philippine records of (A) *Gerrhopilus manilae*; (B) *Gonyosoma oxycephalum*; (C) *Hemibungarus calligaster*; (D) *Hemibungarus gemianulis*. 
Maps 16A–D. Geographic range maps for Philippine records of (A) Hemibungarus mcclungi; (B) Hologerrhum dermali; (C) Hologerrhum philippinum; (D) Hydrophis atriceps.
MAPS 17A–D. Geographic range maps for Philippine records of (A) Hydrophis belcheri; (B) Hydrophis curtus; (C) Hydrophis cyanocinctus; (D) Hydrophis inornatus.
Maps 18A–D. Geographic range maps for Philippine records of (A) *Hydrophis lamberti*; (B) *Hydrophis ornatus*; (C) *Hydrophis platurus*; (D) *Hydrophis semperi*. 
Maps 19A–D. Geographic range maps for Philippine records of (A) *Hydrophis spiralis*; (B) *Hydrophis stokesii*; (C) *Indotyphlops braminus*; (D) *Laticauda colubrina*.
Maps 20A–D. Geographic range maps for Philippine records of (A) *Laticauda laticaudata*; (B) *Laticauda semifasciata*; (C) *Liopeltis philippinus*; (D) *Liopeltis tricolor*. 
Maps 21A–D. Geographic range maps for Philippine records of (A) Lycodon alcalai; (B) Lycodon bibonius; (C) Lycodon capucinus; (D) Lycodon chrysoprateros.
MAPS 22A–D. Geographic range maps for Philippine records of (A) *Lycodon dumerilii*; (B) *Lycodon fausti*; (C) *Lycodon ferroni*; (D) *Lycodon muelleri*.
Maps 23A–D. Geographic range maps for Philippine records of (A) *Lycodon sealei*; (B) *Lycodon solivagus*; (C) *Malayopython reticulatus*; (D) *Malayotyphlops andyi*.
MAPS 24A–D. Geographic range maps for Philippine records of (A) *Malayotyphlops canlaonensis*; (B) *Malayotyphlops castanotus*; (C) *Malayotyphlops collaris*; (D) *Malayotyphlops denrorum*. 
Maps 25A–D. Geographic range maps for Philippine records of (A) Malayotyphlops hypogius; (B) Malayotyphlops luzonensis; (C) Malayotyphlops ruber; (D) Malayotyphlops ruficaudus.
MAPS 26A–D. Geographic range maps for Philippine records of (A) *Microcephalophis gracilis*; (B) *Myersophis alpestris*; (C) *Naja philippinensis*; (D) *Naja samarensis*.
Maps 27A–D. Geographic range maps for Philippine records of (A) *Naja sumatrana*; (B) *Oligodon ancorus*; (C) *Oligodon maculatus*; (D) *Oligodon meyerinkii*. 
Maps 28A–D. Geographic range maps for Philippine records of (A) Oligodon modestus; (B) Oligodon notospilus; (C) Oligodon perkinsi; (D) Ophiophagus hannah.
Maps 29A–D. Geographic range maps for Philippine records of (A) Opisthotropis alcalai; (B) Opisthotropis typica; (C) Oxyrhabdium leporinum leporinum; (D) Oxyrhabdium leporinum visayanum.
MAPS 30A–D. Geographic range maps for Philippine records of (A) *Oxyrhabdium modestum*; (B) *Psammodynastes pulverulentus*; (C) *Pseudorabdion ater*; (D) *Pseudorabdion mcnamarae*. 
MAPS 31A–D. Geographic range maps for Philippine records of (A) Pseudorabdion montanum; (B) Pseudorabdion oxycephalum; (C) Pseudorabdion talonuran; (D) Pseudorabdion taylori.
Maps 32A–D. Geographic range maps for Philippine records of (A) Ptyas carinata; (B) Ptyas luzonensis; (C) Ramphotyphlops cumingii; (D) Ramphotyphlops marxi.
Maps 33A–D. Geographic range maps for Philippine records of (A) *Ramphotyphlops olivaceus*; (B) *Ramphotyphlops suluensis*; (C) *Rhabdophis auriculatus auriculatus*; (D) *Rhabdophis auriculatus myersi*. 
MAPS 34A–D. Geographic range maps for Philippine records of (A) *Rhabdophis barbouri*; (B) *Rhabdophis chrysargos*; (C) *Rhabdophis lineatus*; (D) *Rhabdophis spilogaster*. 
Maps 35A–D. Geographic range maps for Philippine records of (A) *Sibynophis bivittatus*; (B) *Sibynophis geminatus geminatus*; (C) *Stegonotus muelleri*; (D) *Trimeresurus flavomaculatus*. 
MAPS 36A–D. Geographic range maps for Philippine records of (A) *Trimeresurus mcgregori*; (B) *Trimeresurus schultzei*; (C) *Tropidolaemus philippensis*; (D) *Tropidolaemus subannulatus*. 
Maps 37A–D. Geographic range maps for Philippine records of (A) *Tropidonophis cf. negrosensis*; (B) *Tropidonophis dendrophiops*; (C) *Tropidonophis negrosensis*; (D) *Xenopeltis unicolor*. 
Photographs

Photographers: Rafe Brown (RMB), Arvin C. Diesmos (ACD), Jason B. Fernandez and Rafe Brown (JBF/RMB), Vhon Garcia (VG), Kyle Hesed (KH), Nicholas A. Huron (NAH), Cameron Siler (CDS), John Tashjian (JT), Harold Voris (HV), Jeffrey L. Weinell (JF)

N.B.: Within Superfamily-Family-Subfamily groups, photographs are arranged alphabetically by genus and within a genus, by species.
Superfamily Typhlopoidea
Family Typhlopidae

FIGURE 1. Acutotyphlops banaorum (Kalinga Prov., Luzon Id.) (FMNH 262249 [paratype]). Photo © RMB.
FIGURE 2. Indotyphlops braminus (Ilocos Norte Prov., Luzon Id.) (KU 329680). Photo © RMB.
FIGURE 3. Malayotyphlops ruficaudus (Camarines Sur Prov., Luzon Id.) (TNHC 62474). Photo © RMB.
FIGURE 4. Malayotyphlops cf. ruficaudus (Cagayan Prov., Calayan Id.) (KU 323931). Photo © RMB.
FIGURE 5. Malayotyphlops sp. (Laguna Land Grant, Luzon Id.) (KU uncat.; field no. RMB 20573). Photo © RMB.
FIGURE 6. Ramphotyphlops cumingii (Augsan del Norte Prov., Mindanao Id.) (KU 334468). Photo © RMB.
FIGURE 7. Ramphotyphlops cumingii (head) (Augsan del Norte Prov., Mindanao Id.) (KU 334468). Photo © RMB.
Superfamily Pythonoidea
Family Pythonidae

FIGURE 8. *Malayopython reticulatus* (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 23519). Photo © JBF/RMB.

Superfamily Acrochordoidea
Family Acrochoridae

FIGURE 9. *Acrochordus granulatus* (locality unknown, Philippine Ids.) (KU 327186). Photo © CDS.

FIGURE 10. *Acrochordus granulatus* (albino) (locality unknown, Philippine Ids.) (KU 327187). Photo © CDS.

FIGURE 11. *Acrochordus granulatus* (blotched) (locality unknown, Philippine Ids.) (KU 327188). Photo © CDS.
Superfamily Colubroidea
Family Pareidae

Figure 12. Aplopeltura boa (Zamboanga City Prov., Mindanao Id.) (KU 315147). Photo © RMB.

Family Homalopsidae

Figure 13. Cerberus schneideri (Guimaras Prov., Guimaras Id.) (KU 302979). Photo © CDS.

Family Colubridae: Subfamily Ahaetulliinae

Figure 14. Ahaetulla prasina preocularis (Zambales Prov., Luzon Id.) (TNHC 62721). Photo © RMB.

Figure 15. Ahaetulla prasina preocularis (Ilocos Prov., Luzon Id.) (KU 329698). Photo © RMB.
FIGURE 16. *Ahaetulla prasina precocularis* (yellow phase) (Camiguin Norte, Luzon Id.) (KU 304666). Photo © RMB.

FIGURE 17. *Chrysopelea paradisi* (adult) (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 22665). Photo © RMB.

FIGURE 18. *Chrysopelea paradisi* (juvenile) (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 23230). Photo © RMB.

FIGURE 19. *Chrysopelea paradisi variabilis* (Eastern Samar Prov., Samar Id.) (KU 337270). Photo © CDS.

FIGURE 20. *Dendrelaphis luzonensis* (Quezon Land Grant, Luzon Id.) (KU uncat.; field no. RMB 20371). Photos © JBF/RMB.


FIGURE 22. *Dryophiops philippina* (Zamboanga City Prov., Mindanao Id.) (KU 315167). Photo © RMB.
Family Colubridae: Subfamily Calamarinae

**Figure 23.** *Calamaria bitorques* (Nueva Vizcaya Prov., Luzon Id.) (KU 325970). Photo © RMB.

**Figure 24.** *Calamaria gervaisii gervaisii* (Ilocos Norte Prov., Luzon Id.) (KU 329684). Photo © RMB.

**Figure 25.** *Calamaria lumbricoidea* (adult) (Agusan de Sur Prov., Mindanao Id.) (KU 334476). Photo © RMB.

**Figure 26.** *Calamaria lumbricoidea* (juvenile) (Misamis Oriental Prov., Mindanao Id.) (KU 334478). Photo © RMB.

**Figure 27.** *Pseudorabdion ater* (male) (Zamboanga City Prov., Mindanao Id.) (KU 315197). Photo © RMB.
Family Colubridae: Subfamily Colubrinae

FIGURE 28. *Boiga angulata* (Laguna Prov., Luzon Id.) (KU uncat.; field no. RMB 19777). Photo © RMB.

FIGURE 29. *Boiga cynodon* (Sorsogon Prov., Luzon Id.) (TNHC 62721). Photo © RMB.

FIGURE 30. *Boiga dendrophila divergens* (Luzon Id.) (KU uncat.; field no. RMB19986). Photo © RMB.

FIGURE 31. *Boiga dendrophila latifasciata* (male) (Zamboanga City Prov., Mindanao Id.) (KU 334994). Photo © RMB.

FIGURE 32. *Boiga dendrophila latifasciata* (hunting) (West Mindanao Id.). Photo © RMB.

FIGURE 33. *Boiga dendrophila levitoni* (Iloilo Prov., Gigante Norte Id.) (KU 302959). Photo © CDS.
FIGURE 34. *Boiga dendrophila multicincta* (Puerto Princessa, Palawan Id.) (KU309444). Photo © RMB.

FIGURE 35. *Boiga philippina* (Cagayan Prov., Babuyan Claro Id.) (KU 304855). Photo © RMB.

FIGURE 36. *Boiga schultzei* (Narra, Palawan Id.) (KU 327776). Photo © RMB.

FIGURE 37. *Coelognathus erythrurus erythrurus* (Eastern Samar Prov., Samar Id.) (KU 344143). Photo © RMB.

FIGURE 38. *Coelognathus erythrurus manillensis* (Isabella Prov., Luzon Id.) (PNM uncat.; field no. ACD 3092). Photo © ACD/KH.

FIGURE 39. *Coelognathus erythrurus psephenourus* (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 23101). Photo © RMB.
FIGURE 40. *Gonyosoma oxycephalum* (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 22921). Photo © JBF/RMB.

FIGURE 41. *Gonyosoma oxycephalum* (head) (Eastern Samar Prov., Samar Id.) (KU 344269). Photo © JBF/RMB.

FIGURE 42. *Lycodon alcalai* (Cagayan Prov., Camiguin Norte Id.) (KU 304589). Photo © RMB.

FIGURE 43. *Lycodon alcalai* (head) (Cagayan Prov., Camiguin Norte Id.) (KU 304589). Photo © RMB.

FIGURE 44. *Lycodon bibonius* (Cagayan Prov., Babuyan Claro Id.) (KU 304852). Photo © RMB.

FIGURE 45. *Lycodon dumerilii* (Leyte Prov., Leyte Id.) (PNM 7751). Photo © RMB.

FIGURE 46. *Lycodon dumerilii* (Eastern Samar Prov., Samar Id.) (KU 344364). Photo © JBF/RMB.
FIGURE 47. *Lycodon muelleri* (Laguna Land Grant, Luzon Id.) (KU uncat.; field no. RMB 20574). Photo © RMB.

FIGURE 48. *Lycodon sealei* (all black adult) (Puerto Princesa, Palawan Id.) (KU 309447). Photo © RMB.

FIGURE 49. *Lycodon sealei* (head) (Puerto Princesa, Palawan Id.) (KU 309447). Photo © RMB.

FIGURE 50. *Lycodon sealei* (juvenile) (Narra, Palawan Id.) (KU 327571). Photo © RMB.

FIGURE 51. *Oligodon ancorus* (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 23918). Photo © RMB.

FIGURE 52. *Oligodon maculatus* (adult) (Zamboanga City Prov., Mindanao Id.) (KU 315171). Photo © RMB.

FIGURE 53. *Oligodon maculatus* (juvenile) (Zamboanga City Prov., Mindanao Id.) (KU 315172). Photo © RMB.
FIGURE 54. **Oligodon maculatus** (juvenile) (Agusan del Norte Prov., Mindanao Id.) (KU 334450). Photo © RMB.

FIGURE 55 **Oligodon notospilus** (adult) (Brooke’s Point, Palawan Id.) (KU 309637). Photo © RMB.

FIGURE 56 **Oligodon notospilus** (head) Brooke’s Point, Palawan Id.) (KU 309637). Photo © RMB.

FIGURE 57 **Ptyas luzonensis** (Sorsogon, Salvacion, Luzon Id.) (KU uncat.; field no. RMB 23519). Photo © JBF/RMB.

FIGURE 58 **Ptyas luzonensis** (male) (Camarines Norte Prov., Luzon Id.) (KU 313912). Photo © RMB.

FIGURE 59 **Ptyas luzonensis** (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 23519). Photo © JBF/RMB.
Family Colubridae: Subfamily Natricinae

Figure 60. Stegonotus muelleri (Agusan del Sur Prov., Mindanao Id.) (KU 320004). Photo © RMB.
Figure 61. Stegonotus muelleri (head) (Eastern Samar Prov., Samar Id.) KU 344536. Photo © RMB.
Figure 62. Opisthotropis alcalai (Zamboanga City Prov., Mindanao Id.) (KU 315173). Photo © RMB.
Figure 63. Opisthotropis alcalai (head) (Zamboanga City Prov., Mindanao Id.) (KU 315173). Photo © RMB.
Figure 64. Opisthotropis typica (Municipality Quezon, Palawan Id.) (KU 334754). Photo © RMB.
Figure 65. Opisthotropis typica (head) (Municipality Quezon, Palawan Id.) (KU 334754). Photo © RMB.
Figure 66. Rhabdophis auriculatus auriculatus (Agusan del Norte Prov., Mindanao Id.) (KU 334441). Photo © RMB.
Family Colubridae: Subfamily Sibynophinae

**FIGURE 67.** *Rhabdophis lineatus* (Misamis Oriental Prov., Mindanao Id.) (KU 334463). Photo © RMB.

**FIGURE 68.** *Rhabdophis spilogaster* (Subic, Zambales Prov., Luzon Id.) (TNHC 62735). Photo © RMB.

**FIGURE 69.** *Tropidonophis dendrophiops* (Cagayan Prov., Luzon Id.) (KU 330031). Photo © RMB.

**FIGURE 70.** *Sibynophis bivittatus* (Brooke’s Point, Palawan Id.) (KU 309608). Photo © RMB.
Family Lamprophiidae: Subfamily Cyclocorinae

Figure 71. Cyclocorus lineatus lineatus (Laguna Prov., Luzon Id.) (KU uncat.; field no. RMB 20572). Photo © RMB.

Figure 72. Cyclocorus lineatus lineatus (Mindoro Occidental Prov., Lubang Id.) (KU 304095). Photo © RMB.

Figure 73. Cyclocorus nuchalis nuchalis (Zamboanga City Prov., Mindanao Id.) (KU 315164). Photo © RMB.

Figure 74. Cyclocorus nuchalis nuchalis (Zamboanga City Prov., Mindanao Id.) (KU 315165). Photo © RMB.

Figure 75. Cyclocorus nuchalis taylori (Agusan del Norte Prov., Mindanao Id.) (KU 334469). Photo © RMB.

Figure 76. Hologerrhum philippinum (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 24603). Photo © JBF.

Figure 77. Myersophis alpestris (Holotype) (Mountain Prov., Luzon Id.) (KU 203012). Photo © JLW.
FIGURE 78. *Oxyrhabdium leporinum leporinum* (Ilocos Norte Prov., Luzon Id.) (KU 329691). Photo © RMB.

FIGURE 79. *Oxyrhabdium leporinum leporinum* (green phase) (Albay Prov., Luzon Id.) (OU uncat.; field no. CDS 7043). Photo © NAH.

FIGURE 80. *Oxyrhabdium cf. leporinum* (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 24655). Photo © JBF/RMB.

FIGURE 81. *Oxyrhabdium cf. leporinum* (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 20570). Photo © RMB.

FIGURE 82. *Oxyrhabdium cf. leporinum* (Quezon Prov., Luzon Id.) (KU uncat.; field no. RMB 19937). Photo © RMB.

FIGURE 83. *Oxyrhabdium leporinum visayanum* (Negros Occidental Prov., Negros Id.) (Not collected). Photo © RMB.

FIGURE 84. *Oxyrhabdium modestum* (Agusan del Norte Prov., Mindanao Id.) (KU 334388). Photo © RMB.
Family Lamprophiidae: Subfamily Pseudaspidinae

Family Elapidae: Subfamily Elapinae

Figure 85. Psammodynastes pulverulentus (Western Samar Prov., Samar Id.) (OMNH 44541). Photo © CDS.
Figure 86. Psammodynastes pulverulentus (Western Samar Prov., Samar Id.) (OMNH 44542). Photo © CDS.
Figure 87. Calliophis philippina (dorsal) (Misamis Oriental Prov., Mindanao Id.) (KU 334481). Photo © RMB.
Figure 88. Calliophis philippina (ventral) (Misamis Oriental Prov., Mindanao Id.) (KU 334481). Photo © RMB.
Figure 89. Calliophis philippina (Zamboanga City Prov., Mindanao Id.) (KU 314913). Photo © RMB.
Figure 90. Calliophis philippina (head) (Zamboanga City Prov., Mindanao Id.), Photo © RMB.
Figure 91. Calliophis saltian (Holotype) (Dinagat Ids. Prov., Dinagat Id.) (PNM 9844 [formerly KU 310164). Photo © RMB.
Family Elapidae: Subfamily Hydrophiinae

FIGURE 92. Hemibungarus calligaster (Aurora Prov., Luzon Id.) (KU 323337). Photo © CDS.
FIGURE 93. Hemibungarus mcclungi (juvenile) (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 22674). Photo © JBF/RMB.
FIGURE 94. Naja philippinensis (Mt. Mayon, Albay Prov., Luzon Id.) (photo no. CDS 6438). Photo © NAH.
FIGURE 95. Ophiophagus hannah (juvenile). Photo © JT.
FIGURE 96. Hydrophis [Lapemis] curtus. Photo © HV.
FIGURE 97. Hydrophis cyanocinctus. Photo © HV.
FIGURE 98. Hydrophis [Palemis] platarius. Photo © JT.
Family Elapidae: Subfamily Laticaudinae

Figure 99. *Hydrophis* (*Enhydrina*) *schistosus*. Photo © HV.

Figure 100. *Hydrophis* (*Leioselasma*) *semperi*. Photo © VG.

Figure 101. *Hydrophis* (*Leioselasma*) *spiralis*. Photo © HV.

Figure 102. *Laticauda colubrina*. Photo © CDS.

Figure 103. *Laticauda laticaudata*. Photo © JT.
Family Viperidae: Subfamily Crotalinae

FIGURE 104. Trimeresurus flavomaculatus (Cagayan Prov., Luzon Id.) (KU 330049). Photo © RMB.
FIGURE 105. Trimeresurus flavomaculatus (Laguna Prov., Luzon Id.) (KU uncat.; field no. RMB 19801). Photo © RMB.
FIGURE 106. Trimeresurus cf. flavomaculatus (red phase) (Agusan del Norte Prov., Mindanao Id.) (KU 334433). Photo © RMB.
FIGURE 107. Trimeresurus cf. flavomaculatus (green phase) (Misamis Oriental Prov., Mindanao Id.) (KU 334466). Photo © RMB.
FIGURE 108. Trimeresurus cf. flavomaculatus (Agusan del Norte Prov., Mindanao Id.) (KU 334432). Photo © RMB.
FIGURE 109. Trimeresurus cf. flavomaculatus (hunting frogs) (Camiguin Norte Prov., Babuyan Ids.) (individual not collected). Photo © RMB.
Figure 110. *Trimeresurus mcgregori* (grey phase) (Batanes Prov., Batan Id.) (KU 314037). Photo © JBF/RMB.

Figure 111. *Trimeresurus mcgregori* (male) (Batanes Prov., Batan Id.) (KU 314045). Photo © JBF/RMB.

Figure 112. *Trimeresurus mcgregori* (adult) (Batanes Prov., Batan Id.) (KU 314040 [yellow], KU 314041 [gray]). Photo © JBF/RMB.

Figure 113. *Trimeresurus mcgregori* (Batanes Prov., Batan Id.) (KU 314046). Photo © JBF/RMB.

Figure 114. *Tropidolaemus philippensis* (male) (Misimas Oriental Prov., Mindanao Id.) (KU 334490). Photo © RMB.

Figure 115. *Tropidolaemus subannulatus* (Puerto Princesa, Palawan Id.) (KU 309565). Photo © RMB.
FIGURE 116. *Tropidolaemus subannulatus* (Dinagat Prov., Dinagat Id.) (KU 306592). Photo © CDS.

FIGURE 117. *Tropidolaemus subannulatus* (Zamboanga City Prov. Mindanao Id.) (KU 315211). Photo © RMB.

FIGURE 118. *Tropidolaemus subannulatus* (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 23394). Photo © JBF/RMB.

FIGURE 119. *Tropidolaemus subannulatus* (juvenile male) (Sorsogon Prov., Luzon Id.) (KU uncat.; field no. RMB 22673). Photo © RMB.
Index to Volume 64
Parts 1–3, Articles 1–14
Index
PCAS, Series 4, Volume 64, Parts 1-3, Articles 1-14
Taxonomy and major geographic areas

A
Ablabes 435, 436
  philippinus 435
  tricolor 436
Abroscelis 111, 115
  anchoralis 111, 115
  anchoralis 111
  punctatissima 111, 115
Acabaria 364, 373
Acacia 159
Acalyptophis peronii 465
Acalyptus peronii 465
Acanthaceae 37, 38, 39, 131, 134, 137, 319
Acanthodactylus 162, 210, 211, 212, 213, 214, 215, 216, 217, 219, 222, 266, 270, 271
  aegyptius 214
  bedriagai 215
  beershebensis 215, 216
  boskianus 210, 211, 212
  asper 210, 211, 212
  euphraticus 211
  khattensis 211, 212
  nigeriensis 211, 212
  dumerilii 212
  dumerilii 212, 213, 219, 271
  exigus 213
  erythrurus 266
  inornatus 213
  lineomaculatus 216
  longipes 213, 214
  maculatus 214, 215, 216
  pardalis 214, 215, 216, 270
    bedriagai 216
    busacki 216
    latastei 215
    latastei 214
    latastii 215
  savignyi 266
schreiberi 211, 212
  ataturi 211, 212
  schreiberi 211, 212
  syriacus 211, 212
scutellatus 212, 213, 214, 217, 219, 222
<table>
<thead>
<tr>
<th>Location</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nile Delta</td>
<td>193, 190, 192, 211, 214</td>
</tr>
<tr>
<td>Nile Valley</td>
<td>213, 215, 221, 222, 223</td>
</tr>
<tr>
<td>Sinai</td>
<td>173, 176, 178, 181, 182, 185</td>
</tr>
<tr>
<td>Gulf of Guinea</td>
<td>75, 78, 82, 85, 92</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>75, 78, 82, 85, 92</td>
</tr>
<tr>
<td>Eritrea</td>
<td>210, 219, 248, 257, 286</td>
</tr>
<tr>
<td>Gabon</td>
<td>38, 54, 56, 75, 78, 81, 82, 83, 84, 85, 86, 92</td>
</tr>
<tr>
<td>Ghana</td>
<td>54, 56, 75, 78, 92, 118</td>
</tr>
<tr>
<td>Guinea</td>
<td>45, 47, 54, 56, 75, 78, 82, 85, 92</td>
</tr>
<tr>
<td>Gulf of Guinea</td>
<td>95, 99</td>
</tr>
<tr>
<td>Ivory Coast</td>
<td>54, 56, 75, 77, 78, 92</td>
</tr>
<tr>
<td>Kenya</td>
<td>38, 45, 75, 79, 92</td>
</tr>
<tr>
<td>Liberia</td>
<td>38, 45, 55, 56, 75, 77, 79, 92</td>
</tr>
<tr>
<td>Libya</td>
<td>155</td>
</tr>
<tr>
<td>Cyrenaia</td>
<td>155, 156, 157, 159, 160</td>
</tr>
<tr>
<td>Cyrenacia</td>
<td>155</td>
</tr>
<tr>
<td>Cyrenacia</td>
<td>155, 156, 157, 159, 160</td>
</tr>
<tr>
<td>Mauritania</td>
<td>175, 185, 192, 194, 195, 196</td>
</tr>
<tr>
<td>Nigeria</td>
<td>92, 200, 210, 236, 248, 250, 258, 269</td>
</tr>
<tr>
<td>Sahara Desert</td>
<td>155, 156, 157, 159, 194, 209</td>
</tr>
<tr>
<td>Senegal</td>
<td>237</td>
</tr>
<tr>
<td>Somalia</td>
<td>228, 255</td>
</tr>
<tr>
<td>South Sudan</td>
<td>75, 79, 92</td>
</tr>
<tr>
<td>Location</td>
<td>References</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Suez Canal</td>
<td>198, 211, 221, 233</td>
</tr>
<tr>
<td>Tanzania</td>
<td>38, 75, 79, 92, 256, 258, 268, 271</td>
</tr>
<tr>
<td>Togo</td>
<td>200</td>
</tr>
<tr>
<td>Tunisia</td>
<td>155, 156, 160, 172, 175, 176, 177, 192, 195, 196, 200, 202, 203, 204, 206, 211, 212, 214, 217, 221, 224, 226, 227, 228, 230, 236, 241, 246, 251, 261, 264, 266, 267, 268, 270, 272, 273</td>
</tr>
<tr>
<td>Uganda</td>
<td>75, 79, 92</td>
</tr>
<tr>
<td>West Africa</td>
<td>99, 100</td>
</tr>
<tr>
<td>Western Sahara</td>
<td>180, 185, 187, 188, 192, 194, 195, 196, 199, 206, 210, 211, 212, 213, 219, 221, 223, 228, 237, 241, 245, 258, 264</td>
</tr>
<tr>
<td>Afromendoncia</td>
<td>38, 52, 56, 57, 74, 81, 82, 84</td>
</tr>
<tr>
<td>Agama</td>
<td>180, 181, 182, 183, 185, 270</td>
</tr>
<tr>
<td>Aglyphis</td>
<td>427</td>
</tr>
<tr>
<td>Ahaetulla</td>
<td>417, 418, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 511, 512, 551, 552</td>
</tr>
<tr>
<td>prasina</td>
<td>417, 418, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 511, 512, 551, 552</td>
</tr>
<tr>
<td>preocularis</td>
<td>417, 473, 474, 475, 479, 511</td>
</tr>
<tr>
<td>subaeusnsis</td>
<td>418, 474, 481, 482, 512</td>
</tr>
<tr>
<td>Aipysurus eydouxi</td>
<td>458</td>
</tr>
<tr>
<td>Alcyonacea</td>
<td>364</td>
</tr>
<tr>
<td>Amblycephalus boa</td>
<td>414</td>
</tr>
<tr>
<td>Androgaphidiaeae</td>
<td>328</td>
</tr>
<tr>
<td>Anguis</td>
<td>249, 465</td>
</tr>
</tbody>
</table>

**Jaculus 240**

platula 465

Anilios ruficaua 411

Anomacanthus 39, 44

*Anthogorgia* 363, 365, 376, 377, 378, 379

*Anthogorgia* spp. 363, 365, 377

sp. 1 377, 378

sp. 2 377, 379

Antothelidae 361

Anthozoa 361

Aparallactinae 449

Apassalus 323

Aphididae 341

Aphidineae 341

*Aplopetlura boa* 414, 473, 474, 477, 478, 479, 481, 512, 551

Arabia (see under Middle East, Arabian Peninsula)

Argyrophis truncatus 408

Artemisia capillaris 111

Asia 95, 107, 188, 191, 219, 232, 237, 239, 244, 248, 255, 257, 268, 321, 323, 325, 326, 327, 328, 333, 361

Bhutan 325

China 108

India 131, 232, 237, 239, 250, 255, 268, 321, 325, 326, 333, 335, 339

Indonesia 8, 14, 23, 365, 367, 368, 369

Western Papua 8, 14, 23

Japan 99, 364, 365, 369, 371

Malesia 325

Middle Asia 232, 237, 248

Armenia 232

Azerbaijan 232

Dagestan 232

Kazakhstan 237, 247, 248, 249

Kyrgyzstan 232

Turkmenistan 175, 228, 251, 255

Nepal 325

New Guinea (see separate listing)

Palau 365, 367, 368

Philippines 95, 99, 361, 365, 366, 367, 368, 369

Bohol 361

Bohol Sea 361

Busuanga 361, 368, 369, 396

Caban 367, 368
Calamian Group 368, 396
Cobrador 367
Coral Triangle 361, 365, 369
Lubang 95, 361, 364, 366
Luzon 95, 97, 361, 364, 366, 367
Mindoro 95, 364, 366
Negros 361, 366, 380, 383
Siquijor 361, 365, 380
Verde Island Passage 361
Sabah 367
Southwest Asia 239, 244
Afghanistan 228, 232, 237, 248, 255
Iran 175, 198, 210, 228, 232, 233, 236, 237, 240, 242, 248, 250, 251, 252, 255, 257, 266, 268
Pakistan 191, 228, 232, 237, 248, 250, 251, 255, 268
Sri Lanka 111, 228, 285, 321
Taiwan 107, 108, 109, 110, 111, 112, 113, 114, 115
Asiatyphlopinae 407
Asperaxis 364
Astrogorgia 365
Astrotia 458, 467, 476 stokesi 467 stokesii 467
Atlantic Oceans 366
Atractaspidinae 449
Aturia 458, 460, 464 belcheri 460 ornata 464
Aulacophilus 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27 amblygnathus 3, 4, 6, 7, 8, 12, 13, 22, 23, 24 caliginosum 1, 3, 8, 15 caliginosus 3, 4, 5, 8, 9, 10, 11, 25 carinatum 24 carinatus sp. nov. 1, 4, 6, 12, 13, 14, 23 mandibulatum 4, 15 mandibulatus 1, 3, 4, 5, 15, 16, 17 pyrrhicum 16 pyrrhicus 4, 5, 16, 19 rennellensis 1, 2, 3, 4, 5, 9, 19, 20, 21, 22, 25
solitarius sp. nov. 1, 3, 4, 6, 12, 22, 23 tegularis sp. nov. 1, 4, 6, 12, 13, 22, 23, 24, 25

**weiri sp. nov.** 3, 4, 5, 9, 16, 25, 26, 27, 28 Aulacophilus 1, 2, 3, 7, 13, 14, 18, 23, 24, 25, 28 Australia 118, 325, 327, 369, 371 Great Barrier Reef 369 Australia (see also Tasmania) 2, 3, 4, 5, 8, 9, 11, 12, 15, 16, 19, 25, 27, 28 Australian Capital Territory 2, 11 New South Wales 2, 9, 11 Norfolk Island 5, 8, 11 Northern Territory 4, 11, 19, 25, 27 Queensland 2, 4, 8, 9, 12, 16, 19, 27, 28 South Australia 2, 4, 12, 15 Western Australia 4, 9, 12, 15
Avicennia 39 Aykhustigmus 334


574 PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Series 4, Volume 64, Index
 INDEX  575

  schultzei 432
  ssp 477, 478, 480, 482
  philippina 431, 473, 476, 477, 514, 555
  schultzei 429, 431, 432, 479, 514, 555

Boreodoris 124, 126
Bravaisia 327
Briareidae 361
Brillantaisia 319, 320, 321, 322, 327, 328
  lamium 321
  nitens 321
  owariensis 320, 321, 322, 328
Broghammerus reticulatus 413
Brosimum 141
Buhoma 449
Bursera 141

C
Calamaria 422, 423, 424, 425, 426, 473, 474, 475, 476, 477, 478, 480, 482, 514, 515, 516, 553
  bitorques 422, 477, 480, 514, 553
everetti 425
gervaisi 423, 553
gervaisi 423, 424, 473, 475, 477, 478, 480, 482, 514, 515
  gervaisii 423, 475, 477, 482, 514
  hollandi 423, 473, 478, 515
  iridescens 424, 478, 480, 515
  polillensis 424, 480, 515
  hollandi 423
joloensis 424, 476, 515
longiceps 426
lumbricoidea 424, 425, 473, 474, 475, 476, 477, 478, 480, 477, 478, 516, 553
mearnsi 425
mindorensis 423
palavanensis 425, 479, 516
philippina 424
polillensis 424
suluensis 425, 474, 516
virgulata 425, 478, 479, 482, 516
zamboangensis 425
Calamarinae 422
Calibelemnon 363, 369, 397
francei 369
indicum 363, 369
  sp 397
  symmetricum 369
Calliophis 453, 454, 455, 473, 474, 475, 476, 478, 479, 481, 517, 563
  bilineata 453, 473, 474, 476, 479, 517
  bilineatus 453
caligaster [sic] 455
caligaster 455
  calligaster 455
  gemianulis 455
  mcclungi 455
  intestinalis 453
philippina 454, 478, 481, 517, 563
salitan 454, 476, 517, 563
suluensis 454, 476, 481, 517
Caliphis 454
  intestinalis 454
  Philippina 454
  suluensis 454

Calmidae 118
Calomera angulata 111, 115
Canary Islands 175
Carabidae 32, 35, 107
Caretta caretta 171, 172
Carex pumila 111
Caribbean Sea 366
  Bahamas 366, 369
  West Indies 326
Carinostigma 333, 335, 336, 337, 338, 339
  aterrimus 333, 335, 337, 338
  costatus 339
  filippovi 338
Carlowrightia 131, 132, 133, 134, 135, 137
  hintonii 135
  myriantha 136
  yucatanensis sp. nov. 131, 132, 133, 134, 135, 136, 137, 153
Casuarina equisetifolia 111
Cenozoic 159
  Holocene 159, 160
  Miocene 160, 287
Central America 37, 324, 325, 326, 327
  Caribbean Sea area (see separate listing)
  Costa Rica 37, 117, 126, 322, 326
  Gulf of Mexico 366
  Mexico (see separate listing)
  Nicaragua 326
Panama 37, 322, 326, 329
Cerastes 259, 260, 261, 262, 271
Cerastes 259, 260, 261, 262
Cerastes 261
hoofieni 260
hoofienii 261
Richiei 261
Ripera 261, 262
Cerberus 402, 415, 416, 473, 474, 475, 476, 477, 478, 479, 480, 518, 551
microlepis 402, 415, 477, 518
rhynchos 415, 416
schneiderii 415, 473, 474, 475, 476, 477, 478, 479, 480, 518
unicolor 415
Chaetacanthus 323
Chalcides 157, 226, 227, 228, 229, 231, 267, 271
boulengeri 226, 227
chalcides 228
vittatus 228
delislei 267
ocellatus 228, 229, 230
linosae 230
ocellatus 228, 230
subtypicus 230
tiligugu 230, 231
zavattarii 230
ragazzii 230
sepsoides 227, 231
Chamaeleo 188, 189, 190, 271
chamaeleon 188, 189, 190, 271
musae 190
orientalis 190
recticrista 190
saharicus 190
Chamaeleonidae 188
Chaunolemus multicalarinus 198
Chelonia 171
mydas 172, 173
Chelonidae 171
Chersydrus granulatus 414
Chileanthemum 324, 325
Chitulia 460, 463, 464, 476, 477
belcheri 460
lamberti 464
oprnata 464
Chlamydacanthus 328
Chrysopelea 418, 419, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 518, 552
ornata 418
paradisi 418, 419, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 518, 552
paradisi 418, 481, 518
variabilis 418, 419, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 518, 552
Cicindela batesi 111, 115
Clarkeasia 327
Clathraria 364
Cnidaria 361
Coelognathus 432, 433, 434, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 519, 555
erthyra 432, 433, 434
erthyra 432
manillensis 433
erthyrus 432, 433, 434, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 519, 555
erthyrus 432, 473, 474, 475, 476, 477, 478, 479, 480, 481, 519, 555
manillensis 433, 434, 473, 474, 475, 476, 477, 480, 519, 555
psephenoura 434
psephenoura 433, 434, 473, 474, 475, 476, 478, 480, 482, 519, 555
philippinus 434, 473, 474, 475, 479, 481, 482, 519
Coleoptera 107
Coluber 241, 242, 244, 246, 247, 248, 249, 251, 252, 255, 257, 258, 259, 261, 416, 432, 433, 434, 435, 448, 469
algirus 241, 242, 259
cahirinus 251
Cerastes 259
cifordii 249, 251
cucullatus 244
erthyrus 432, 433, 434
florulentus 241, 242
algirus 241
geminatus 448
gemmary 251
guttatus 251
INDEX

Haje 258
(Homalopsis) prevostianus 416
insignitus 252
laticaudatus 469
maurus 246
moilensis 257
oxycephalus 435
rhodorachis 248, 249
rhodorachis 248
rogersi 247
schokari 255
vipersa 261
Colubridae 241, 268, 417, 551, 553, 554, 559, 560
Colubrinae 429, 554
Colubroidea 414, 551
Compsosoma 432, 433
melanurum 432
erythrurum 432
manillensis 432
Coryphodon carinatus 443
Crabronidae 1, 333
Crematogaster 51
Crinum asiaticum 111
Crocodylus niloticus 160
Crossandra 319, 320, 321, 322, 323
flava 323
infundibuliformis 320, 321, 322
nilotica 323
undulaefolia 323
Crotalinae 470
Crysopelea (sic) ornata 418
Ctenosaura acanthura 187
Cuthona 118, 126
behrensi 118
destinayae 118
millenae 118
nana 118
riosi 118
Cuthonella 118
cocoachroma 118
concinnina 118
Cyclochorus 451
lineatus 451
maculatus 451
maculatus 451
Cyclocorinae 399, 449
Cyclocorus 433, 449, 450, 451, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 520, 561
lineatus 449, 450, 474, 475, 476, 477, 478, 479, 480, 482, 520
alcalai 449, 475, 476, 479, 480, 482, 520
lineatus 449, 450, 474, 475, 477, 478, 479, 480, 520, 561
nuchalis 450, 473, 477, 481, 520, 561
nuchalis 450, 473, 478, 520, 561
taylori 450, 477, 478, 481, 520, 561
Cyclorhamphus fasciatus 198
Cyclosomini 107
flexuosus 111
inustus 107, 108, 109, 110, 111, 112, 113, 114, 115
Cylindera kaleea angulimaculata 111, 115
Cytanthera chrysostephanthus 131, 149, 151, 152
D
Daboia 264, 265
deserti 264
mauritanica 264
deserti 264
Dendrelaphis 419, 420, 421, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 521, 522, 552
caudolilatus 419, 420, 421, 474, 481
flavescens 419
luzonensis 420
terrificus 419, 421
flavescens 419, 474, 481, 482, 521
fuliginosus 419, 475, 478, 479, 480, 521
levitoni 419, 420, 473, 475, 479, 521
luzonensis 420, 474, 475, 476, 478, 482, 521, 552
marenae 420, 421, 473, 474, 475, 476, 477, 478, 482, 481, 522, 552
philippinensis 421, 522
pictus 420
pictus 420
terrificus 421
Dendrophis philippinensis 421
Dendrelaphis (sic) marenas 420
Dermochelyidae 173
Dermochelys coriacea 173, 174
Diaulula 118
Dichotella 368
Dicliptera 325
Diclipterinae 325
Dipsadomorphus 430, 431
dendrophilus 430, 431
latifasciatus 430
multicinctus 431
philippinus 431
Dipsas 422, 429, 431
cynodon 429
(Dipsadomorphus) angulata 429
drapiezii 431
philippina 431
rubescens 422
Dischistocalyx 327
Discodorididae 119
Disteira 458, 459, 466
cincinnatii 459
schistosa 466
Distira annandalei 458
Doliophis 453, 454
bilineatus 453
philippinus 454
Doris 119
coccinea 119
rubra 119
Dryocalamus 435, 438, 473, 479, 522
mccroryi 438
philippinus 435, 473, 479, 522
tristrigatus 435
Dryophiops 421, 422, 475, 477, 478, 479, 480, 481, 522, 523, 552
philippina 421, 478, 479, 480, 481, 522, 552
rubescens 422, 475, 523
Dryophis 417
prasinus 417
preocularis 417
Duosperma 323
Dyschoriste 319, 320, 322, 323, 327
depressa 323
hirsutissima 323
littoralis 323
madurensis 323
nagchana 323
thumbergiiflora 319, 320, 322, 323

vagans 323

E

Echis 262
arenicola 263, 264
leucogaster 263, 264
carinatus 262
leucogaster 262
pyramidum 263
leucogaster 263
pyramidum 262, 263, 264
leucogaster 263
lucidus 263, 264
pyramidum 264
Elaphe 432, 433, 434
erythura 432, 433, 434
erythura 432, 433, 434
manillensis 433
philippina 434
psephenoura 434
philippina 434
Elaphe melanurus manillensis 433
Elapidae 258, 259, 269, 453, 563, 565, 566
Elapinae 453, 563
Elapoidea 401
Elaps calligaster 455
Ellisellidae 361, 365, 367, 368
Enydocephalus annulatus 458, 523
Engelia 38, 52
tovarensis 52
Enhydrina 458, 465, 466
schistosa 465
Eryx 239, 240, 241, 264, 270
braminus 239, 408
jaculus 240, 241, 270
jaculus 240
turcicus 241
Eubranchidae 118
Eubranchus 118
olivaceus 118
yolandae 118
Eumeces 232, 233, 271
algeriensis 233
meridionalis 233
schneiderii 232, 233, 271
aldrovandi 232, 233
schneiderii 232
Euprepes savignii 267
Europe 166, 191, 206, 240, 242, 246, 247, 265, 267
Crete 162, 188, 189, 206, 244, 250, 263, 274
Cyprus 173, 212, 228, 232, 233, 240, 252
France 161, 175, 201, 206, 213, 214, 217, 232, 233, 244, 246, 252, 262
Greece 175, 191, 206, 228, 231, 240
Iberian Peninsula 188, 206, 246, 266
Italy 161, 171, 175, 188, 206, 228, 241, 246, 267
Sardinia 175, 228, 230, 246
Sicily 175, 228, 230
Malta 175, 188, 230, 241
Mediterranean (Sea) (see separate listing)
Romania 240
Russia (see separate listing)
Spain 175, 191, 192
Balearic Islands 175, 245, 246
Turkey 171, 173, 175, 188, 191, 212, 231, 232, 234, 237, 250, 252, 268

F
Fiona pinnata 118
Fionidae 118, 126, 128
Fordonia leucobalia 416, 478
Furculachelys nabeulensis 175

G
Galápagos (see under South America: Ecuador)
Garziolliella longipes 196
Gecko 162, 201, 203, 209
annularis 201
fascicularis 203
Gekkonidae 191, 196, 208, 266
Geomyidae 174
Gerada 416, 477, 479, 523
bicolor 416
prevostiana 416, 477, 479, 523
Gerrhopilidae 407
Gerrhopilus 407, 473, 475, 477, 478, 479, 482, 523, 524
hederaeus 407, 473, 475, 478, 479, 482, 523
manilae 407, 473, 477, 524
Goldfussia colorata 327
Gonyosoma 435, 473, 474, 475, 476, 477, 478, 479, 480, 481, 524
oxycephala 435
oxycephalum 435, 473, 474, 475, 476, 477, 478, 479, 480, 481, 524
Gonyosoma oxycephalum 556
Gorgonidae 361, 366
Graptophyllum 319, 322, 323, 324, 325, 326, 328, 329
pictum 322, 323, 324, 328
Grasshoffia 95, 96, 97, 99, 101, 102, 103, 104, 105
profundica sp. nov. 96, 97, 99, 101, 102, 103, 104, 105
virgularioidea 97, 99
Gryllloblatta campodeiformis nahanni 32
Gymnodactylus Steudneri 198

H
Hamadas 157, 159
Hamadryas hannah 457
Haplonodon philippinensis 439
Haplopettura boa 414
Heirophis gemonensis 242
Heliania 363, 367, 368, 393, 394
racementa 368
spinescens 363, 367, 368, 393, 394
Helicopsoides typicus 444
Hemigraphis 328
latebrosa 328
rangepis 328
Hemibungarus 455, 456, 457, 458, 475, 476, 477, 478, 479, 480, 524, 525, 564
calligaster 455, 477, 479, 524, 564
calligaster 455
gemianulis 455
mcclungi 455
gemianulis 455, 475, 476, 478, 479, 480, 524
gemianulus 455
mcclungi 455, 475, 477, 480, 525, 564
Hemidactylus 191, 192
turcicus 191, 192
lavadeserticus 192
spinalis 192
Hemigraphis 327
Hemiptera 341
Hemorrhoid 241, 242, 248, 269
algirus 241, 242, 248, 269
intermedius 241
Heremites vittatus 233, 234, 268, 271
Herpetodryas tricolor 436
Heterodon Diadema 242
Hibiscus tiliae 111
Hicksonella princeps 363, 366, 387, 388, 389
Hirudo medicinalis 353
Holarchus 441, 442
ancorus 441
maculatus 441
meyerinkii 441
perkinsi 442
Holarchus 441, 442
ancorus 441
maculatus 441
meyerinkii 441
perkinsi 442
Holarchus 441, 442
ancorus 441
maculatus 441
meyerinkii 441
perkinsi 442
Hologerrhum 449, 450, 451, 475, 477, 478, 480, 525, 561
dermalii 450, 480, 525
philippinum 451, 477, 480, 525, 561
Homalopsidae 415, 551
Homalopsis 415, 416
leucobalia 416
schneiderii 415
Hurria 415
microlepis 415
rhynchos 415
Hydrophiinae 458, 565
Hydrophis 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 475, 476, 477, 478, 479, 481, 482, 525, 526, 527, 528, 565
[Acalyptophis] peronii 465
[Astrotia] 467
stokesii 467, 476
[Chitulia] 460, 463, 464, 476, 477
belcheri 460
lamberti 463, 476, 477
ornatus 464, 476, 477
[Enhydrina] schistosus 465, 466, 565
[Kerelia] jerdoni 463
[Kolpophis] annandalei 458
[Lapemis] curtus 461, 477, 478, 479, 482, 565
[Leioselasma] 461, 464, 466, 482, 565
coggeri 461
melanocephalus 464
semperi 466, 477, 565
spiralis 466, 482, 565
[Mediodyrophis] klossi 463
[Palemis] platyurus [sic] 565
[Pelamis] 465, 476, 477, 478, 481, 482
platus 465, 476, 477, 481, 482
[Praescutata; Thalassophina] 467
viperinus 467
[Thalassophis] anomalous 459
atripeps 459, 460, 477, 478, 481, 482, 525
belcheri 460, 526
brookii 460
camulescens 460
coggeri 460, 461
curtis 461
curtus 526
cyanocinctus 462, 475, 477, 482, 526, 565
fasciatus atripeps 459
gracilis 468
hardwicki 462
inornatus 462, 463, 526
klossi 463
lamberti 527
melanocephalus 461, 464
ornatus 462, 464, 527
ornatus 464
pacificus 460
platus 527
platyurus [sic] 465
schistosus 465
semperi 466, 527
spiralis 466, 528
stokesii 528
sublaevis var. melanocephalus 464
viperinus 467
Hydrus 414, 460, 466, 467, 468
camulescens 460
colubrinus 468
camulescens 460
colubrinus 468
camulescens 460
colubrinus 468
camulescens 460
colubrinus 468
Hygrophila 321
costata 321
polysperma 321
senegalensis 321
Hygrophila 321
Hyla 198, 352
cinerea 352
gracilenta 198
Hymenoptera 1, 333
Hyphaene 159
Hypoestes 325

I
Ifalukellidae 361, 368
India (see under Asia)
Indian Ocean 38, 45, 366
   Comoros Archipelago 38, 48, 52, 68, 74
   Mayotte 38, 45, 48, 52, 53, 64, 68, 74, 92, 93
Indo-Pacific (Oceans) 118, 364, 366, 368, 370
   Hawaii 364
   Indo-West Pacific 365, 366, 368, 369
   Marshall Islands 369
   New Caledonia 364, 365, 368, 369
   Solomon Islands (see separate listing)
Indotyphlops braminus 239, 240, 270, 408, 473, 474, 475, 476, 477, 478, 480, 481, 482, 528, 549
Ipomoea pes-caprae 111
   brasiliensis 111
Isididae 361
Ixeris 111
   debilis 111
   repens 111

J
Jacobinia chrysostephana 149
Junceella 368
Justicia 131, 132, 134, 136, 137, 139, 140, 147, 149, 151, 152, 319, 320, 322, 324, 328
   ardens 131, 152
   chrysostephana 131, 149, 151, 152
   durangensis 131, 152
   fulvicoma 322, 324, 328
   lindenii 131, 151, 152
   oerstedii 140
   pochutensis 149
   scheidweileri 319, 320, 322, 324, 328
   tweediana 324
zapoteca sp. nov. 131, 132, 134, 136, 137, 139, 140
Justicieae 324, 325, 326

K
Kerelia jerdoni 463
   jerdoni 463
   siamensis 463
Keroeides 363, 364, 374, 375
   gracilis 363, 364, 374, 375
   koreni 364
Keroeididae 361, 364
Kolpophis annandalei 458

L
Lacerta 188, 191, 210, 212, 221, 228, 235, 236
   chamaeleon 188
   Dumerili 212
   guttulata 219
   ocellata 228
   Olivieri 221
   Pardalis 215
   rubropunctata 222
   scincus 236
   stincus [sic] 235
   turcica 191
Lacertidae 210, 266
Lamprophiidae 252, 269, 449, 561, 563
Lamprophiinae 449
Lankestheria elegans 328
Lapemis 461, 462, 477, 478, 479, 482
   curtus 461, 462
   hardwickii 461, 462
   hardwickii 461, 462
Laticauda 468, 469, 473, 474, 475, 476, 477, 478, 479, 480, 481, 528, 529, 566
   colubrina 468, 473, 474, 475, 476, 477, 478, 479, 480, 481, 528, 529, 566
   laticaudata 469, 473, 474, 475, 476, 477, 478, 479, 481, 528, 529, 566
   semifasciata 469, 473, 474, 475, 476, 477, 479, 480, 482, 529
Laticaudinae 468, 566
Leioselasma 458, 461, 462, 464, 466, 482
   coggieri 461
   cyanocincta 462
   melanocephala 464
   semperi 466
spiralis 466
Leptodira tripolitana 251
Leptotyphlopidae 238, 268
Leptotyphlops 238, 239
algeriensis 268
cairi 268
macrorhynchus 238, 239
Liopeltis 435, 436, 474, 475, 479, 529
philippinus 435, 474, 475, 529
tricolor 436, 474, 529
Lirayea 38, 52, 81
floribunda 52, 81
Lithobates 352, 354, 356
catesbeianus 356
sphenocephalus 352, 354
Lophyra cancellata subtilesculpta 111, 115
Louteridium 131, 137, 140, 141, 142, 143, 144, 145, 327
brevicalyx 144, 145, 146
dendropilosum sp. nov. 131, 137, 140, 141, 142, 143, 144
rzedowskianum sp. nov. 131, 141, 144, 145, 146
Lycoptera 402, 436, 437, 438, 439, 440, 443, 444, 453, 476, 477, 478, 479, 480, 481, 482, 530, 531, 532, 533, 556, 557
alcalai 436, 473, 474, 475, 480, 530, 556
aulicus 436, 437
capucina 437
bairdi 453
bibonius 436, 473, 475, 530, 556
capucinus 436, 437, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 530
chrysoprateos 402, 436, 438, 475, 476, 530
dumerili 438
dumeriliti 438, 473, 476, 477, 478, 481, 531, 556
fausti 439, 480, 531
ferroni 439, 481, 531
lineatus 449
muelleri 439, 473, 475, 476, 477, 478, 479, 480, 531, 557
mülleri 439
sealei 440, 479, 532, 557
solivagus 440, 477, 532
subcinctus 440
tessellatus 437, 438, 440, 477
Lycognathus diadema 243
Lytorkynchus 242, 243, 244, 271, 287
diadema 242, 243, 244, 250, 251, 271
arabicus 244
diadema 242
mesopotamicus 244
gaddi 244
kennedyi 244
Mabuia [sic] 233, 267
quinquetaeniata 267
vittata 233
Mabuya 233
vittata 233
decora 347, 349, 352, 353, 354, 356, 359
diploptertia 347, 348, 352, 353, 356
ditetra 347, 348, 349, 352, 353, 354, 359
sestertia 347, 348, 349, 350, 351, 352, 353, 354, 356, 359
Macrobdellidae 347
Macropophis 445, 447, 448
barbouri 445, 448
dendrophiops 447
Macroprotodon 244, 245, 246
cucullatus 244, 245, 246
brevis 246
ibericus 246
mauritanicus 246
textilis 246
Macrosiphini 341
Macrosiphum 341, 342, 343, 344, 345
edrossi 341, 342, 343, 344, 345
euphorbiae 341
rosae 341
solanifolii 341
Macroviaper deserti 264
Madagascar 37, 38, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 62, 63, 64, 65, 66, 67, 68, 70, 71, 73, 74, 79, 80, 86, 87, 89, 92, 93, 131, 321, 323, 325, 327
Magaera flavomaculata 470
Malayopython reticulatus 412, 413, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 532,
550
reticulatus 413
Malayotyphlops 407, 408, 409, 410, 411, 474, 475, 476, 477, 478, 479, 480, 481, 482, 532, 533, 534, 549
andyi 408, 477, 532
canlaonensis 409, 479, 533
castanotus 409, 474, 476, 479, 480, 533
collaris 409, 477, 533
denrorum 409, 410, 477, 533
hypogius 410, 475, 480, 534
luzonensis 410, 475, 476, 477, 478, 479, 480, 481, 534
manilae 407
ruber 410, 477, 479, 480, 482, 534
ruficauda 411
ruficaudus 411, 475, 477, 478, 481, 482, 534, 549
sp. 549
Malpolon 252, 253, 257, 258
insignitus 252, 253
fuscus 252, 253
insignitus 252
moilensis 257
monspplessulanus 252, 253
Marshall Islands (see under Indo-Pacific)
Mastax brittoni 111, 115
Maticora 453, 454
intestinalis 453, 454
bilineata 453
philippina 454
suluisns 454
Mauremys 174, 175, 271
leprosa 174, 271
saharica 174, 175, 271
vameerhaeghei 175
Mediohydrophis klossi 463
Mediterranean Sea 156, 171, 173, 191 (see also under Europe for Mediterranean islands Crete, Cyprus, Malta)
Megaskepasma erythrochlamys 319, 322, 324, 328
Melithaeas 363, 364, 373
spp. 363, 364
Melithaeidae 361, 364
Melitodes 364
Mendoncia 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94
aspera 38, 52
combretoides 42, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 92, 93
cowanni 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 56, 58, 59, 60, 62, 63, 64, 65, 66, 80, 91, 92, 94
coursii 43, 52, 54, 58, 62, 94
decaryi 44, 48, 49, 52, 54, 58, 63, 64, 65, 92, 94
delphina 44, 46, 47, 48, 49, 53, 64, 65, 66, 92, 93
flagellaris 40, 42, 44, 46, 47, 48, 49, 51, 52, 53, 60, 64, 66, 68, 69, 70, 92, 94
floribunda 81
gilgiana 44, 45, 47, 49, 53, 56, 74, 75, 76, 77, 92, 93
tisserantii 74, 76, 77
ekely 44, 46, 47, 48, 49, 54, 79, 80, 92, 94
leestui 84, 86
lindaviana 40, 43, 44, 45, 47, 48, 49, 52, 53, 81, 82, 83, 92, 93
madagascariensis 56
phytocrenoides 44, 45, 47, 49, 52, 53, 84, 85, 86, 92, 93
iodioides 86
puberula 50
rabiensis 56
velloziana 50
vinciflora 43, 44, 46, 47, 48, 49, 53, 58, 70, 86, 87, 88, 92, 93
Mendonciaceae 39
Mendoncieae 38
Mendoncioideae 39
Mesalina 219, 220, 221, 222, 223, 266, 271
bahaeldini 221, 223, 285
guttulata 219, 220, 221, 222, 223, 271
olivieri 221, 222
latastii 222
olivieri 222
schmitii 222
susana 222
pasteuri 222, 266
rubropunctata 222, 223, 224
simoni 222
Mexico (México) 37, 117, 118, 119, 126, 128, 131, 132, 135, 136, 138, 140, 141, 144, 145, 146, 147, 149, 152, 153, 322, 323, 324, 325, 326, 329
Baja California 117, 119, 126, 129
Sea of Cortez 117
Gulf of California 117, 118, 119, 128
Oaxaca 131, 132, 136, 138, 140, 141, 146, 147, 149, 152, 153
Sonora 119
Yucatán 131, 132, 135, 136, 153
Meyenia 39, 40, 328
Microcephalophis 458, 468, 477, 535
cantoris 458
gracilis 458, 468, 477, 535
Micropterus dolomieu 355
Middle East 155, 175, 190, 228, 234, 240, 252, 270
Arabian Peninsula 188, 190, 228, 232, 236, 237, 250, 255, 257, 261
Arabia 321
Oman 212, 248, 275, 288
Saudi Arabia 182, 198, 217, 219, 221, 242, 247, 248, 257, 266
Yemen 212, 219, 221, 255, 285
Gaza 178
Iraq 182, 183, 210, 211, 217, 219, 221, 222, 228, 232, 233, 236, 237, 242, 247, 248, 250, 292
Jordan 182, 191, 192, 194, 196, 197, 212, 217, 219, 221, 228, 231, 236, 237, 242, 248, 249, 250, 255, 266
Kuwait 183, 210, 217, 219, 221, 236, 242
Lebanon 212, 228
Red Sea 188, 197, 219, 235
Farasan Islands 219
Syria 182, 191, 192, 221, 228, 236, 237, 247, 248, 250, 255, 257
Monachochlamys 38, 52, 56, 66, 67, 74, 81, 84
floribunda 81
gilgiana 74
iodioides 84
lindaviana 81
madagascariensis 56
phytocrenoides 84
iodioides 84
Mopsella 364
Muricella 365
Myersophis 449, 451, 477, 535, 561
alpestris 451, 477, 535, 561
Myriocthon speculifera 111
Myriopholis 155, 238, 239, 268, 270
cairi 268
lanzai 155, 207, 238, 239, 268, 270
macrorhyncha 238
N
Naja 242, 258, 259, 269, 456, 457, 474, 476, 477, 478, 480, 481, 535, 536, 564
haje 242, 258, 259
hannah 457
naja 456
miolepis 457
samarensis 456
nubiae 269
philippinensis 439, 456, 473, 474, 475, 476, 477, 478, 480, 481, 535, 564
samarensis 456, 474, 476, 477, 478, 481, 535, 564
sumatrana 457, 474, 476, 480, 536
tripudians 456, 457
caeca 456
samarensis 456
sumatrana 457
Natricinae 444, 559
Natrix 445, 446, 447, 448
auriculata 445
barbouri 445, 446
chrysarga 446
drebiopunctata 445
dendrophiops 447, 448
dendrophiops 447
negrosensis 448
lineata 446
maura 246
spilogaster 447
stolatus 447
Nebria 32, 35
Boreonebria 32
Nectarinia souimanga 51
Neomixis 51
Neotropics 37, 38, 52
New Guinea 1, 4, 6, 8, 12, 14, 22, 23, 24, 25
Papua New Guinea 8, 24, 25, 323, 368 (see also under Asia)
New Zealand 99
Newtonia 51
Nicella 365
North America 31, 99, 323, 324, 326, 347
Canada 31, 32, 353
Ontario 353
United States 32, 347, 354, 358
Arkansas 348
Georgia 353
Kansas 348
Louisiana 348, 353
Maine 347, 348, 353, 359
Massachusetts 347, 348, 359
Missouri 348
New Hampshire 347, 348, 354, 355
North Carolina 348, 353
South Carolina 347, 348, 349, 350, 351, 352, 353, 354, 359
Notophthalmus viridescens 356

O

Octocorallia 95, 361
Odontonema 319, 321, 322, 324, 325, 326, 328
bracteolatum 324
callistachyum 319, 321, 322, 325
tubaeforme 321, 322, 325, 328
Odontonominae 324, 325, 326
Oenothera laciniata 111
Oligodon 441, 442, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 536, 537, 557, 558
ancorus 441, 447, 479, 536, 557
maculatus 441, 478, 536, 557, 558
meyerinkii 441, 474, 476, 480, 481, 482, 536
modestum 442
modestus 442, 477, 478, 479, 480, 482, 537
notospilus 442, 473, 474, 478, 479, 537, 558
perkinsi 442, 475, 537
vertebralis notospilus 442, 474
Omophron 108
Onychophis 411, 412
Cumingii 411
olivaceus 412
Ophiopagus hannah 457, 473, 474, 475, 476, 477, 478, 479, 480, 537, 564
Ophisops 224, 225, 270
elegans 224, 225
occidentalis 224, 225, 270
Ophites 437, 440
aulicus 437
subcinctus 440
tessellatus 437, 440
Opisthotropis 444, 478, 479, 538, 559
alcalai 444, 478, 538, 559
typica 444, 479, 538, 559
Oplonia 324, 325
Oriental Region 107
Oxycalamus 426, 427
longiceps 426
oxycephalus 427
Oxyrhabdium 449, 451, 452, 473, 474, 475, 476, 477, 478, 479, 480, 481, 538, 539, 562
leporinum 451, 474, 475, 477, 478, 479, 538, 562
leporinum 451, 474, 477, 478, 479, 538, 562
visayanum 452, 475, 479, 538, 562
modestum 452, 539, 562

P

Paleartic 162, 169
Paleotropics 37
Pandanus odoratissimus 111
Papilionaceae 135
Papua New Guinea (see under New Guinea)
Paratrechina 51
Pareatidae 414, 551
Pareatoidea 401
Parias 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481
flavomaculata 470
flavomaculatus 470
mcgregori 471
Pelamis 465
platura 465
platurus 465
Pennatulacea 95, 97
Pennatulidae 361
Periops algira 241
Peristrophe 319, 320, 322, 325, 328
bicalyculata 325
hyssopifolia 325
japonica 325
paniculata 325
salicifolia 325
speciosa 320, 322, 325, 328
Petaliidinae 323
Petalidium barlerioides 323
Phaulopsis 323
Philochoerus 226, 271
ihoet 226
zoli 226, 271
Phoenix dactylifera 159
Phyllodactylidae 155, 200, 266
Pinnigorgia 363, 367, 390, 391, 392
flava 363, 367, 390, 391, 392
perroteti 367
platystoma 367
Pison 1, 2, 3, 4, 8, 15, 16, 19, 25
atrum 4
difficile 3
icarioiades 3
obliteratum 3
pistillum 3
pyrrhicum 16
woji 3
Placobdella 347, 348, 353, 354, 359
montifera 353
nuchalis 347, 348, 353, 354, 359
Plagiodon erythrurus 432
Platycercus 242, 247, 248, 249, 269, 270
chesneii 247, 248
florulentus 269
perreti 269
karelina 248
karelina 248
ladacensis 249
rhodorachis 248, 249
rogersi 242, 247, 248, 269, 270
saharicus 248, 249
tessellata [sic] 249
tessellatus 248, 249
ventromaculatus 248
Plestiodon Aldrovandii 232
Plexauridae 361, 365, 370
Plumigorgia 363, 368, 370, 396, 397, 398
astroplethes 369
hydroides 363, 368, 369, 396, 397, 398
schuboti 369
terminosclera 369
wellsi 369
Podarcis 267
muralis 267
sicula 267
vaucherii 267
Poikilacanthus 131, 132, 134, 137, 146, 147, 148, 150, 324
foliosepalus sp. nov. 131, 132, 137, 146, 147, 149, 150
pochutensis sp. nov. 131, 132, 134, 137, 146, 147, 149, 150
Polydontophis bivittatus 448
Polyodontognathus caeruleus 461
Præscutata viperina 467
Psammophorus algirus 267
Psammodynastes 449, 453, 473, 474, 475, 476, 477, 478, 479, 480, 481, 539
pulverulentus 453, 473, 474, 475, 476, 477, 478, 479, 480, 481, 539, 563
pulverulentus 453
Psammophiinae 449
Psammophis 254, 255, 256, 257, 269, 271
aegyptius 254, 256
biseriatus 256
tanganicus 256
schokari 254, 255, 256, 271
aegyptius 254
schokari 255
shokari [sic] 255
sibilans 255, 256, 269
sibilans 269
tanganicus 256, 257, 271
Psammophis pulverulentus 453
Pseudaspidinae 453
Pseuderanthemum 319, 320, 322, 324, 325, 326
crenulatum 326
graciliflorum 319, 320, 322, 326
laxiflorum 326
INDEX 587

Pseudocalyx 39, 40, 91, 328
Pseudolaticauda semifasciata 469
Pseudorabdion 426, 427, 428, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 539, 540, 553
ater 426, 478, 539, 553
longiceps 426
mcnamarae 427, 473, 475, 477, 478, 479, 480, 481, 482, 539
montanum 427, 475, 479, 540
oxycephalum 426, 427, 428, 474, 475, 476, 477, 478, 479, 540
talonuran 428, 480, 540
taylori 427, 428, 478, 540
torquatum 426
Pseudorabdion [sic] longiceps 426
Pseudorhabdion longiceps 426
Pseudorhabdium 426, 427
longiceps 426
mcnamarae 427
Pseudotrapelus 181, 182, 270, 271
chlodnickii 181, 182, 270, 271
sinaitus 181, 182
Pseudoxyrophinae 449
Ptyas 443, 475, 477, 479, 480, 541
carinata 443, 479, 541
carinatus 443
luzonensis 443, 475, 477, 479, 480, 541, 558
Ptyodactylus 195, 200, 201, 270
hasselquistii 195, 200, 270
ragazzii 200, 201, 270
togoensis 200, 201, 270
Python reticulatus 268, 413, 473, 476
reticulatus 413
sebae 268
Pythonidae 268, 412
Pythonoidea 412

R
Rabdion (also as Rhabdion) torquatum 426
Ramphotyphlops 239, 402, 408, 411, 412, 473, 474, 475, 478, 479, 480, 481, 541, 542, 549
braminus 239, 408
cumingi 549
cumingii 411, 473, 478, 480, 481, 541
marxi 412, 480, 541
olivaceous 412
olivaceus 412, 473, 474, 480, 481, 542
suluensis 402, 412, 473, 474, 481, 542
Rhabdophis 433, 445, 446, 447, 473, 474, 475, 476, 477, 478, 480, 481, 542, 543, 559, 560
auriculata 445
auriculata 445
myersi 445
auriculatus 445, 473, 474, 477, 478, 481, 542, 559
auriculatus 445, 477, 478, 481, 542
myersi 445, 473, 474, 478, 542
barbouri 445, 446, 447, 477, 543
chrysargos 446, 473, 474, 475, 479, 543
lineatus 446, 473, 474, 476, 477, 478, 481, 543, 560
spilogaster 446, 473, 475, 477, 480, 543, 560
Rhabdosoma 427, 451
leporinum 451
oxycephalum 427
Rhagerhis moilensis 257, 258
Rhinacanthus 325
Rostanga 117, 118, 119, 120, 121, 122, 123, 124, 125, 126
alisae 118, 124
aliusrubens 124
ankyra 118, 123, 124, 126
anthelia 124
arbutus 124
aureomala 124, 126
aureommala 123
australis 123, 126
bassia 124
bifurcata 124
byga 124
calumus 124
crawfordi 123, 124, 126
crocea 118, 123, 124
dentacus 124
ealandsi 123
ealandsia 124, 126
ghiselini sp. nov. 117, 119, 120, 121, 122, 123, 124
lutescens 124, 126
muscula 124
orientalis 124
phepha 123, 124, 126
pulchra 117, 118, 119, 123, 124, 125
risbeci 123, 124
rosi 123, 124
rubra 123, 124
setidens 123, 124, 126
Ruellia 147, 153, 319, 320, 326, 327, 328
costaricensis 319, 320, 326, 328
devosiana 326
diaperacanthus 320, 326, 328
elegans 320, 326, 328
macrantha 326
makoyana 322, 326, 328
portellae 326
prostrata 326
repens 326
squarrosa 326
tuberosa 326, 327
Ruellieae 321, 323, 326, 327
Ruelliinae 326, 327
Ruelliposis 323
Rumphella aggregata 366
Russia 32, 232, 252
Caucusus 175, 252

S
Sanchezia 319, 322, 327
nobilis 327
parvibracteata 322, 327
Sarothea 140
Satanocrater 327
Sautiera 323
Scaevola sericea 111
Scapeira 212, 214, 219
inornata 212
maculata 214
punctulata 219
Scincidae 226, 267
Scincopus 234, 235, 270, 279
fasciatus 234
melanochepalus 235
Scincus 231, 232, 233, 234, 235, 236, 237, 267, 271
albifasciatus 236, 237, 267
albifasciatus 237, 267
laterimaculatus 237
(Scincopus) fasciatus 234
officinalis 235
cucullata 235
Schneiderii 232
scincus 235, 267, 271
contirostris 237
cucullatus 235, 236, 237
laterimaculatus 236
meccensis 237
scincus 235, 236, 237
sepsoides 231
vittatus 233
Sclerootilidae 361, 369
Scolecocephedia 407
Scytilopis diboutiensis 99
Scytilium 99
Scythale pyramidus 262
Seps vittatus 228
Sibynophinaceae 448, 560
Sibynophis 448, 474, 475, 476, 479, 482, 544, 560
bivittatus 448, 474, 475, 476, 479, 544, 560
geminatus 448, 482, 544
bivittatus 448
geminatus 448, 482, 544
melanocephalus 448
Simotes meyerinkii 441
Siphonoglossa durangensis 131, 152
Solomon Island Archipelago (Islands) 4
Rennell Island 4, 19, 22
Solomon Islands 2, 5, 19, 22
South America 37, 39, 323, 324, 326, 327, 341
Argentina 341, 345
Bolivia 37, 341, 345
Brazil 37, 131, 324, 326
Chile 341
Colombia 37, 38, 345
Ecuador 37, 345
Galápagos 118, 119, 125
Guianas 37
Peru 341, 342, 345
Venezuela 345
Spalerosophis 249, 250, 251, 268
cifordii 250
cifordii 251
diadema 249, 250, 251
INDEX 589

cliffordi 249
cliffordii 249, 250, 251
diadema 251
schirasianus [sic, schirazianus] 251
dolichospilus 268
Sphenops 226, 227, 231
boulengeri 226
sepoïdes 226, 231
Spilotes 432, 443, 444
melanurus 432
samarensis 443, 444
Spinifex littoreus 111
Squamata 155, 180, 182, 238, 248
Staphylinidae 32
Stegonotus 438, 439, 444, 476, 477, 478, 481, 544, 559
dumerili 439
dumerilii 438
muelleri 439, 443, 476, 477, 478, 481, 544, 559
mülleri 443
Stenodactylus 162, 192, 193, 194, 195, 196, 197, 270
elegans 197
guttatus 195
mauritanicus 162, 192, 193, 194, 196, 197, 270
Mauritanicus 192
petrii 162, 194, 195, 196
stenurus 162, 194, 195, 196, 286
stenodactylus 162, 192, 193, 194, 195, 196, 197
zavattarii 197
Stenognathus 451, 452
brevirostris 451
modestus 452
Stenosiphonium 327
Stigmina 333
Stigmus 333, 334, 335, 336
aterrimus 333, 335
congruus 333
convergens 334
cuculus 333, 334, 335, 336
japonicus 334
quadriceps 334
Strobilanthes 319, 320, 322, 327, 328
bracteata 327
discolor 327
hamiltoniana 319, 320, 322, 327, 328
pavala 327
quadrangularis 327
Strobilanthopsis 323
Stylatula 99
Subbergorgiidae 361
Suessenguthia 327

T

Tamarix 159
Tarentola 155, 162, 163, 201, 202, 203, 204, 206, 207, 208, 209, 266, 270, 271
(Sahelogecko) 201
annularis 201
annularis 201, 202
deserti 202, 203, 207
ephippiata 210, 266
fascicularis 155, 162, 203, 204, 207, 208, 270
wolfgangi 204, 207
mauritana 163, 193, 194, 202, 203, 204, 206, 207, 208
deserti 202
dulceae 206
pallida 206
mindiae 208, 270
neglecta 207, 209, 210, 270, 271
lancea 209, 270
neglecta 209

Tasmania 4, 11, 12 (see also Australia)
Telecopus 251, 252
dhara 252
guidimakaensis 252
obtusus 251, 252
triplulatus 251, 252
Tenellia 117, 118, 120, 123, 126, 127, 128
adspersa 118
albocrusta 118, 128, 129
columbiana 118
flavovultus 118
fulgens 118
ivetteae sp. nov. 117, 120, 123, 126, 127, 129
lagunae 118
mediterranea 126
pustulata 118
riosi 128, 129
Tergipedidae 118
Tergipes adspersus 126
Testudinidae 175, 265
Testudo 166, 171, 172, 173, 175, 176, 177, 178, 179, 265, 271
camanulata 177, 265
caretta 171
coriae 173
flavominimaralis 265
graeca 166, 175, 176, 177, 265, 271
cyrenaica 175, 176
marokkensis 177
nabeulensis 175, 176, 177
soussensis 177
terrestris 177
hermanni 265
ibera 177
kleinmanni 177, 178, 179, 265
leithi 179
leithii 178
marginata 177, 265
mydas 172
nabeulensis 176, 177, 178
(Pseudotestudo) kleinmanni 178
werneri 179
Tetragonia tetragonoides 111
Thalassophina viperina 467
Thalassophis 459, 467
anomalus 459
viperina 467
Thrinchostoma 51
Thunbergia 38, 39, 40, 54, 84, 91, 319, 322, 328
alata 328
coccinea 328
erecta 322, 328
grandiflora 322, 328
mysorensis 319, 322, 328
phytocrenoides 84
Thunbergiaceae 39
Thunbergieae 38
Thunbergioideae 37, 38, 39, 328
Thrysacanthus 324, 325
bracteotus 324
rutilans 325
Tipula 31, 32, 33, 34
Vestiplex 31, 32, 33, 34
aldrichiana 31, 32, 33
balioperta 32
Tipulidae 31, 32
Tomogaster eydouxii 458
Trachylepis 234, 267, 270
quinquetaeniata 234, 267, 268
quietaenita 270
Trapelus 182, 183, 184, 185, 271
boehmei 185, 207
mutabilis 182, 183, 185, 271
mutabilis 182, 183
pallidus 183
poppeki 182, 183, 184, 185
schmitzi 185
Trichanthera 327
Trichosanchezia 327
Tricyphona 31, 32, 34
calcar 32
subaperta 31, 32, 34
Trimeresurus 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 544, 545, 566, 567
(Parias) 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481
flavomaculatus 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481
mcgregori 470, 471, 473, 475
schultzei 471, 473, 480
cf. flavomaculatus 566, 567
flavomaculatus 470, 471, 544, 566
flavomaculatus 470
halieus 470
mcgregori 471
halieus 470
mcgregori 470, 545, 567
schadenbergi 470
schultzei 471, 545
wagleri 472
alboviridis 472
wagleri 472
Trimesurus subannualtus 472
Trimericea inermis 363, 366, 383, 384, 385, 386
Tropidolaemus 471, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 545, 567, 568
hombronii 471, 478
philippensis 471, 472, 476, 477, 478, 481, 545, 567
subannulatus 471, 472, 473, 474, 476, 477,
INDEX

478, 479, 480, 481, 482, 545, 568
wagleri 471, 472
Tropidolepisma Richardi 198
Tropidonophis 445, 446, 447, 448, 473, 474, 475, 476, 477, 478, 480, 481, 546, 560
dendrophiops 445, 447, 448, 473, 474, 475, 476, 477, 478, 481, 546, 560
negrosensis 445, 447, 448, 473, 475, 478, 479, 480, 481, 546
Tropidonotus 445, 446
auriculata 445
auriculatus 445
chrysargos 446
lineatus 446
spilogaster 446
Tropiocolotes 198, 199, 266
nattereri 266
somalicus 200
steudneri 198, 266
tripolitanus 198, 199, 252
algericus 199
apoklomax 199
occidentalis 199
Tupinambis griseus 237
Typhlogeophis 426, 427, 428
ater 426
brevis 427
Typhlogeophus brevis 427
Typhlopidae 239, 407
Typhlopoidae 407
Typhlops 407, 408, 409, 410, 411, 412
braminus 408
canaloenensis 409
castanotus 409
collaris 409
cumingi 411
dendrophis 411
hedraeus 407
hypogia 410
jagorii 411
longicauda 411
lozonensis [sic] 410
luzonensis 410
manilae 407
maxii 412
mindanensis 411
olivaceus 412
petersi 411
rubra 410
ruficauda 411
ruficaudus 411
rugosa 411
suluensis 412

U
Uromastix acanthinura 185, 187
Uromastycidae 185
Uromastyx 156, 185, 186, 187, 188, 270, 271
acanthinura 185, 186, 187, 188
nigriventris 187
acanthinurus 185
alfredschmidti 156, 187, 188, 270
geyri 187
Urtica sp. 342, 345

V
Varanidae 237
Varanus 237, 238
griseus 237, 238
caspius 238
griseus 238
koniecznyi 238
Veretillidae 361
Verrucella 363, 368, 393, 395
sp. 1 393
sp. 2 393
spp. 363, 368, 393, 395
Vigna marina 111
Vipera 264
deserti 264
lebetina 264
deserti 264
mauritanica 264
deserti 264
Viperidae 259, 261, 263, 470
Viperoidea 401
Virgularia 99
Virgulariidae 95, 97, 99, 361
Vitex rotundifolia 111

W
Walterinnesia aegyptia 269
Whitfieldia 319, 322, 328
_elongata_ 319, 322, 328
Whitfieldieae 328
Wrightella 364

**X**

*Xenodon ancorus* 441
Xenopeltidae 413
*Xenopeltis unicolor* 413, 473, 474, 476, 479, 481, 546
*Xerothamnella* 325

**Z**

*Zamenis* 242, 247, 248
*florulentus* 242, 247
*gemonensis* 242
*Rogersi* 247

*Zaocys* 443
*carinatus* 443
*luzonensis* 443
*Zygoruellia* 328
Table of Contents

THOMAS F. DANIEL: Chromosome Numbers of Some Cultivated Acanthaceae with Notes on Chromosomal Evolution in the Family ........................................... 319

WOJCIECH J. PULAWSKI AND RAMASAMY GANDHI GRACY: Redescription of two Indian Stigmina (Hymenoptera: Crabronidae) .................................................. 333

JUAN M. NIETO NAFRIA AND JAIME ORTEGO: Macrosiphum edrossi Essig, 1953 (Hemiptera, Aphididae): Second World Record, Redescription, and Biological and Taxonomic Notes ........................................................................................................... 341

WILLIAM J. POLY: Range Extension for the Elusive New England Medicinal Leech, Macrobella sestertia Whitman, 1886 (Hirudinida: Macrobellidae), in South Carolina, U.S.A., with Notes on Morphology, Coloration, and Biology ......................... 347

GARY C. WILLIAMS: Illustrated Key and Synopses of Shallow-water Gorgonians and Pennatulaceans of the Central Philippines, Part 2 (Cnidaria: Anthozoa: Octocoralla) .................................................................................................................. 361

ALAN E. LEVITON, CAMERON D. SILER, JEFFREY L. WEINELL, AND RAFF M. BROWN: Synopsis of the Snakes of the Philippines: A Synthesis of Data from Biodiversity Repositories, Field Studies, and the Literature .................................................. 399

INDEX to Volume 64, Parts 1-3, Articles 1-14 ....................................................... 469