DARWIN

A READER'S GUIDE

Michael T. Ghiselin
Table of Contents

Preface and acknowledgments .. 5
Introduction ... 7
Darwin’s Life and Works .. 9
 Journal of Researches (1839) .. 11
 Geological Observations on South America (1846) 13
 The Structure and Distribution of Coral Reefs (1842) 14
 Geological Observations on the Volcanic Islands (1844) 14
 A Monograph on the Sub-Class Cirripedia, With Figures of All the Species (1852-1855) 15
 On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1859) 16
 On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing (1863) 23
 The Different Forms of Flowers on Plants of the Same Species (1877) ... 25
 The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (1876) 26
 The Variation of Animals and Plants under Domestication (1868) ... 27
 The Descent of Man, and Selection in Relation to Sex (1871) 33
 The Expression of the Emotions in Man and Animals (1872) 37
 Insectivorous Plants (1875) ... 40
 The Movements and Habits of Climbing Plants (1865) 41
 The Power of Movement in Plants (1880) 42
 The Formation of Vegetable Mould, through the Action of Worms, with Observations on their Habits (1881) ... 42
Secondary literature and other sources .. 43
 Darwin Chronology .. 47
 Biographical Dictionary ... 69
Bibliographies .. 118
 I. Publications of Charles Darwin .. 118
 II. Publications based on Darwin’s Collections 123
 III. Secondary literature .. 126
 Supplement to the Secondary literature .. 185
Preface

The inspiration for this guide can be traced to my decision way back in 1966 to read all of Darwin’s major works and write a book about him, *The Triumph of the Darwinian Method*, published in 1969. Subsequently, I have continued to be an avid reader of Darwin’s publications and have written quite a number of shorter pieces on his life and works. The guide itself has evolved out of my notes, bibliographies, and other scholarly apparatus. The chronology owes a great deal to my contributions to the *Dictionnaire du Darwinisme* edited by Patrick Tort. An early version of the biographical dictionary was created when I prepared the *Darwin CD ROM* in collaboration with Pete Goldie. Further material was gathered in the expectation of producing a third edition of the CD ROM. Alas, because of changes in the economics of electronic publishing, that project never came to fruition, though the second edition is still available. This is not, however, a re-issue of materials published earlier. The chronology and the biographies are based on notes that have been extensively reworked and much expanded. Over the years I have continued to enlarge my personal, computerized bibliography, and the selections from it presented here are based on literally years of work. Although the introductory section bears some resemblance to those I have written for re-issues of Darwin’s books, it was written entirely from scratch.

With the approach of the bicentennial of Darwin’s birth and the 150th anniversary of the publication of *The Origin of Species*, the need for a guide like this became increasingly obvious. My colleague Alan Leviton gave me a great deal of encouragement and we worked out a plan to publish this guide in both hard copy and on line.

Acknowledgments

Several persons have helped me assemble the materials used here and get them into electronic form and I am most grateful to them. These include Rasmus Winther and Subir Trivedi. Michele Aldrich read a draft with great care and provided much useful advice and greatly improved the manuscript. Alan Leviton was supportive of this project, both improving the manuscript and getting it ready for publication. I am particularly anxious to thank my old friend Barbara Pope, a plant physiologist who has spent many months in the Darwin archives at Cambridge University. She played various important roles in preparing the manuscript, volunteering her time and providing a generous donation in support of publication. Lastly, I want to thank Hallie Brignall, the Academy’s Managing Editor of Scientific Publications, for critiquing galley proofs of this publication.
Charles Darwin’s book entitled *On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life* was published in 1859. It shook the world like no other publication before or since and initiated a revolution in our thinking that is still gathering momentum. It is among the most important scientific books ever written, and for many of us the one most worthy of being read and understood. Although well written, and intended for a broad audience, it is anything but a piece of light literature. It challenges the reader to study and to reflect. Furthermore, the *Origin* was intended as an “abstract” of a much longer work, to be entitled *Natural Selection*, which was neither finished nor was it published in Darwin’s lifetime. Instead Darwin published a series of sequels to the *Origin*, which bear such titles as *The Variation of Animals and Plants under Domestication* and *The Descent of Man, and Selection in Relation to Sex*. These too deserve to be read, and read with understanding.

Might we not say much the same of the entire corpus of Darwin’s writings? After all, he was the author of a travel book recounting his voyage around the world that is a masterpiece of the genre and one that has delighted readers ever since it appeared in 1839. This first volume made his scientific reputation as a geologist, and that aspect of his work is crucial to understanding what kind of thinker he was. A full twenty percent of his life’s work was devoted to a massive treatise on barnacles, a publication which, if not must reading for everybody, is of more than just historical interest. A variety of people, in addition to zoologists, might find parts of it quite fascinating. Much the same might be said of his writings on floral anatomy, plant physiology, plant and animal behavior, psychology, and, especially, earthworms.

Although the exercise of reading all of Darwin can be rewarding, most readers will not have the time or the inclination to go so far. A good sample, suited to the reader’s tastes and interests, seems more realistic. But the reader might welcome an overview as well as some guidance with respect to the interpretation of the various works. Beginners need to know where to begin, and even the most experienced might appreciate some guidelines. Interested persons include both the more casual and general reader and the scholarly community, including students as well as professionals in many branches of knowledge. A fair number of readers might get more deeply involved with Darwin than they had originally intended, and that would hardly be regrettable.

Bearing such needs in mind, I have prepared this Guide, one that reflects my personal experience and draws upon the materials I have accumulated with the passage of decades. The Guide begins with a short biography of Darwin that differs somewhat from some of my other biographical pieces in that it expressly focuses upon Darwin’s literary productions. It provides background, context, and explication for the texts. Because Darwin dealt with different topics at different times in his life, there is a roughly chronological order, beginning with natural history and geology, and ending with physiology and psychology. That justifies emphasizing the major works and treating them in a more or less logical sequence.

The next section of the Guide is a Chronology, or timeline, showing dates relevant to the study of Darwin’s life. Some of these are obviously important, whereas others are rather trivial, perhaps being mentioned solely for their curiosity value. Included are details of Darwin’s life both public and private. This part will probably be most useful to students and the community of professional Darwin scholars. However, one can easily imagine uses to which it might be put by the general reader. For example, Darwin’s account of his trip around the world was based largely on the journal that he kept. However, for literary reasons, he did not present his visits to particular places in strictly chronological order. So, if one is interested in knowing what he did, and when and where he did it, the task can be frustrating, especially if one does not have the original version of his journal at hand.

Next comes the Darwin Biographical Dictionary, an alphabetically-arranged series of biographical sketches of persons of interest to students of Darwin’s life and works. Similar biographical sketches can be found elsewhere, and readers also have recourse to standard biographical works including encyclopedias.
Yet these do not always provide the kind of information that a student of Darwin needs. Here the goal has been to emphasize the relevance of each person to our understanding of Darwin and his life. The choice of whom to include has been a bit arbitrary at times. Every effort has been made to include the persons mentioned in the Chronology. Also included are many of the important people whose names are encountered in Darwin’s works and a fair number of minor figures as well.

The final section consists of bibliographies. These have been prepared from my personal database on topics that interest me. I have not been able to check all of the references against the originals, especially secondary sources taken from other bibliographies. I have, however, checked many of these. In the case of Darwin’s own publications, I have been particularly fastidious but fear I may have made some mistakes. However, I was able to identify and correct the year of publication normally attributed to one of Darwin’s own works by examining the signatures of an original copy in the California Academy of Sciences’ library showing clearly that it could not have been published as early as had been thought.

Here is as good a place as any to point out how often the titles of Darwin’s own books turn up in emended form, and this is often indicative of how poorly the work has been understood. Consider three examples. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life becomes On the Origin of Species by Means of Natural Selection, or, The Preservation of Favoured Races in the Struggle for Life. A clause that explains the then unfamiliar term ‘natural selection’ has been converted into an alternative title. The Variation of Animals and Plants under Domestication becomes The Variations…. A process of varying is confused with the phenomenon of diversity. And finally, consider an example that suggests a failure to consult the original: A Monograph on the Sub-Class Cirripedia becomes A Monograph of…. Let us not be too hard on those who make such mistakes, especially now, when computers automatically and, seemingly, without apparent human intervention, introduce errors into texts!

The first of the bibliographies is that of Darwin’s own publications. With a few minor exceptions, I have checked all of these publications against the originals. Several of Darwin’s books appeared in more than one edition. I have compared all of the editions word for word, and that can be an instructive exercise. There are problems that one should watch out for with different printings and different editions. It also helps to know that all the variants in the six editions of The Origin of Species have been presented in a “variorum” edition by Morse Peckham (1959). Unfortunately, the variorum edition is rather difficult to use.

The second of the bibliographies gives works that were based on specimens that Darwin collected. Many of these contain quotations from Darwin’s notes. It aims only at a good, representative sample.

The third of the bibliographies contains secondary literature, i.e., what people have written about Darwin. It also includes publications based on Darwin’s notebooks, correspondence and manuscripts, generally with scholarly notes and commentary. There is a vast and growing body of literature on Darwin. It would be an impossible task, and a waste of time, to try to cite every work in which Darwin’s name is mentioned, even in the title. For example, when scientists provide the scientific name of an animal or plant they include the name of the scientist who described it. Inasmuch as Darwin named many species of barnacles, a large number of papers by zoologists include his name for no other reason.

Such a bibliography as this obviously should include the important works, especially those of high scholarly quality. It is fairly easy to identify the books and journal articles that are considered important and of high quality by professional Darwin scholars. On the other hand, some works that are well known are not of very high quality. One neither wants to leave these out, nor does one want to ignore a book simply because it is written for a popular audience. But one must draw the line somewhere, and I have left out many works that seem to have little if any scholarly merit. On the other hand I have included much that I, personally, do not think very highly of.

At the end of the biographical essay, which immediately follows this introduction, I do recommend some works that seem to me particularly meritorious, interesting, or useful. Then there is the question of what really counts as Darwin studies. The bibliography includes a substantial number of items that are not primarily about Darwin himself, but deal with persons who were important in his life, such as his friends and collaborators Joseph Dalton Hooker and Thomas Henry Huxley, and of course Alfred Russel Wallace, with whom he shares credit for the discovery of natural selection. There are also some works that are valuable for understanding areas of knowl-
edge to which Darwin contributed or otherwise provide background information that might be useful to the reader.

Darwin’s Life and Works

Someone bent upon reading all of Darwin might reasonably begin with what is rather misleadingly called his autobiography and other works of an autobiographical character. However, such an entry into his works presents unexpected difficulties. In the first place, the “autobiography” was not written for publication but for his family, who did not have to be told, for example, not to take his modest assessment of his own abilities at face value. In the second place, the version that was edited and published by his son Francis in 1887 deleted some material that was deemed unfit for publication at the time. So it includes an expression of admiration for the philosopher Herbert Spencer, but not the expression of disapproval that qualified it. An unexpurgated edition was published by one of Darwin’s grand-daughters, Norah Barlow. On the other hand, the autobiography is good reading and it provides a fair overview of Darwin’s life and some insight into his character. Darwin also wrote a biography of his Grandfather, Erasmus Darwin, whose views on evolution are an important part of the history on the subject. Although it says little about evolution or other scientific topics, it is a most enjoyable book to read.

Charles Darwin was born on February 12, 1809. His father, Robert Waring Darwin, was a wealthy physician. His paternal grandfather, Erasmus Darwin, was also a highly successful physician as well a scientist, an inventor, and a famous poet. His notions about evolution were similar to those of Lamarck and appeared in print earlier. Charles Darwin’s mother, Susannah Wedgwood, was the daughter of Josiah Wedgwood I, who founded the Wedgwood pottery firm. She was the sister of Charles’s uncle, Josiah Wedgwood II, who continued to run the family business. She died when Charles was only eight years old and Charles and his younger sister Caroline were cared for by their older sisters. Charles shared an interest in chemistry with his older brother, Erasmus Alvey Darwin. That interest provides a good example of how young Darwin’s education was largely extracurricular. He performed poorly in school and was sent, at the age of sixteen, to study medicine at the University of Edinburgh, where his elder brother Erasmus was already enrolled. Charles seems to have been an indifferent medical student, in part it would seem because he had figured out that he would never have to work for a living. On the other hand, he joined the local scientific society, became acquainted with local scientists, and pursued his extra-curricular interests.

Darwin decided that he did not want to continue his medical education. His brother, although he did complete his medical degree, never practiced and spent his life as a gentleman intellectual in London. Their father, afraid that Charles would become an idle sporting man, insisted that he do something respectable. Therefore he was sent to Cambridge University to be educated as a clergyman. This makes more sense than one might think: a living in the country would provide him with a soft job and plenty of time in which to pursue his real interests. Furthermore, science was a respectable activity for a clergyman in those days, and Cambridge professors were often ordained as Anglican ministers. At Cambridge Darwin was again a rather indifferent student, though he completed the requirements for a degree and performed respectably on his examinations. The extracurricular activities were another matter. He became an avid beetle collector, and made contact with entomologists. He read Alexander von Humboldt’s account of scientific travel in South America and it had a profound effect on him. Perhaps his most important reading at the time, however, was John Herschel’s *Introduction to the Study of Natural Philosophy*. It was a major work on the philosophy of science, one that Darwin said was very important in his intellectual development. At Cambridge he met William Whewell, another important early philosopher of science. He became the protégé of John Stevens Henslow, the professor of botany, and spent a great deal of time with him. He attended Henslow’s series of botany lectures twice. Another important figure in his life was the geologist Adam Sedgwick. Darwin accompanied him on a field excursion and evidently learned a lot from him.

After passing his examinations in January of 1831, Darwin still had to fulfill the residence requirements and his time seems largely to have been devoted to preparing for a career as a scientist, and that included some travel. By good fortune he was offered the post of unofficial naturalist and gentlemanly companion to the captain, Robert FitzRoy, on a surveying voyage on H.M.S. *Beagle*. Although Darwin’s father at first refused to grant permission, his mother’s brother, Josiah Wedgwood II, intervened and the invitation was accepted. The *Beagle* was scheduled to
map the South American coast and, by means of very accurate clocks called chronometers, to determine longitudes. The result would be better maps and improved navigation. FitzRoy was an able captain, much admired by his men, and intellectually well equipped for the task. But he was a difficult person, and suffered from bouts of depression. FitzRoy and Darwin became good friends, though their relationship was strained for a while because of differences about slavery. Measured in terms of the value systems of the day, Darwin was liberal, open-minded, and tolerant, whereas FitzRoy was rigidly conservative. They both approved of the work of Christian missionaries in Tahiti and co-authored an article to that effect when they reached Cape Town.

Darwin, although he was not the Beagle’s official naturalist, was encouraged to collect and observe anything of interest to natural history that he might encounter during the voyage. The Beagle had an excellent collection of relevant scientific books on board so he was able to consult the literature during the trip. His original intent was to concentrate on the two areas in which he had gained experience at Edinburgh and Cambridge respectively: marine zoology and geology. He took the first volume of Charles Lyell’s Principles of Geology with him, and the other two volumes reached him later on en route. Lyell was an advocate of the principle of uniformitarianism, and was opposed to the deluges and other major upheavals that had been invoked by advocates of catastrophism. Darwin was soon convinced of the merits of Lyell’s approach and became one of his most effective supporters. As the voyage continued, Darwin realized that his geological researches were yielding important results. Yet he continued to observe and collect plants and animals. He also made some observations on behavior that seem, in retrospect, to relate to the kind of evolutionary speculation that he had encountered at Edinburgh. He traveled and collected extensively on land, and as a result realized that there had been a considerable amount of change, and rather recently. Giant animals had become extinct. Introduced animals and plants were invading new territory. And there were peculiar distribution patterns. Interest in such matters was further stimulated by Lyell’s negative, albeit penetrating, assessment of the evolutionary ideas of Lamarck. During the voyage, Darwin evidently believed that species could change somewhat in adaptation to local circumstances, but not that such change could go so far as to bring new species into existence.

Along the Atlantic coast of South America Darwin found clear indications that the continent had been uplifted; on the Pacific coast he found further evidence of the same phenomenon. He worked out much of the geological history of the Andes. While he was in Chile, for example, a major earthquake occurred and he was able to document the immediate effects of upheaval. Sedgwick arranged for an account of his discoveries, sent as correspondence, to be published as Darwin’s first contribution to the scientific literature. Darwin was ever concerned with the implications of his discoveries, and while still in South America he speculated about the uplift and subsidence of the land on a global scale. One result was the formulation of his famous theory of coral reefs. Coral grows in shallow water, along coasts and on islands. If an island rimmed by coral were to sink, and the coral were to grow at the same time, the island might gradually disappear and nothing but coral would be left. Later on in the voyage Darwin was able to test this theory by observations on coral formations at Tahiti and, more importantly, at Keeling Atoll in the Indian Ocean.

By his own accounts published much later, Darwin did not become an evolutionist during the voyage, though he began to think seriously about such matters. He was still a creationist both before and for some time after his famous visit to the Galapagos Archipelago, which is now treated as a living laboratory of evolution. The notion that he became a convert to evolution while visiting the Galapagos is a myth. He was looking for “centers of creation” that Lyell had invoked to explain the different faunas and floras in various parts of the world. He did not try to collect evidence related to evolution while he was there. As the voyage continued, however, he visited New Zealand and other islands with peculiar animals and plants, and of course the continent Australia too. The possibility of evolution may have been in his mind late in the voyage. However, he did not become convinced that evolution has in fact occurred until after he got home and had some of his specimens examined by specialists. Some of what he had thought were varieties turned out to be distinct species. And some of the South American fossils were giant relatives of smaller forms that were still living in the same area. There followed a period of some months, beginning in March, 1837, during which Darwin speculated a great deal and tried to invent a plausible mechanism for evolution, something that would explain the adaptations of animals and plants.
It was in October 1838 that Darwin read “for amusement,” as he misleadingly put it, Malthus’s *Essay on the Principle of Population*. Malthus, the first professor of economics, had pointed out that the potential rate of multiplication of any animal, man included, is so great that the supply of food and other resources will tend to restrict, and ultimately prevent, population growth. Malthus expressed the relationship by saying that the population increases geometrically, whereas the resources can only be increased arithmetically. We can ignore the niceties and details here, the point being that scarcity of resources means that there is competition between the organisms that make up the population for the wherewithal to survive and reproduce. Because some organisms are more vigorous, fertile, or otherwise well endowed than others, in subsequent generations the population changes in the direction of being more effectively equipped to win out in the reproductive competition. This was Darwin’s concept of natural selection, which he presented to the world as a well developed theory some twenty years later.

Darwin kept a diary during the voyage. It provided a lively account of his travels and observations on the state of society as well as the natural scene, and was clearly influenced by Darwin’s reading of Alexander von Humboldt’s *Personal Narrative*. Early in the voyage Darwin showed his diary to Captain FitzRoy, who liked it very much and encouraged him to publish it. The diary was the basis for Darwin’s first book, which is popularly known as *The Voyage of the Beagle*. It was extensively supplemented by additional material, and much revised. (The Diary itself, edited by Richard Darwin Keynes, has been published.) The first edition, published in 1839, appeared as part of a series that includes FitzRoy’s account of the voyage. It was prepared at a time when Darwin was convinced that evolution has in fact occurred, but before he read Malthus and discovered natural selection. A second edition, with a slightly different title, was published in 1845. (We will refer to the work as the *Journal of Researches*, or just the *Journal*, for short.) By then Darwin had developed his evolutionary theory extensively, and had even written a preliminary outline and then a draft of a short book explaining it. (Later published as the “Sketch of 1842” and the “Essay of 1844.”) As one might expect, the first edition of the *Journal* contains a considerable amount of material having to do with evolution, plus some hints about the kind of evolutionary speculation that he had been considering. The second edition adds material that bears upon the theory of natural selection, even a brief passage on Malthus. If one is interested in the evolution of Darwin’s ideas, it can be an enlightening exercise to compare the three versions in some detail. For most readers, especially beginners, there is no particular reason for doing that, but the circumstances of revision should be borne in mind. The 1845 edition is the most widely available and just as good reading as the first. The book is one of the classics of travel literature and can be enjoyed simply as a literary work. Humboldt praised it for its “painterly” qualities. It also contains fascinating materials about the economy and the state of society at the time.

The book provides brief accounts of material that was discussed at greater length in Darwin’s later publications, such as his book on coral reefs, and the reader will probably have no difficulty understanding their significance. However, a few comments seem in order about some of the observations that were significant for his evolutionary ideas but for good reason he did not fully explain at the time. His observations on various peoples, including primitive ones, reflect a few of his ideas about social and cultural evolution. Darwin took considerable interest in groups of animals having representatives that live in habitats that are different from those to which the group as a whole seems to be adapted. These include terrestrial flatworms, a group that is largely aquatic, and the terrestrial crab *Birgus latro*. In the Galapagos Islands he experimented on the behavior of a lizard that makes excursions into the sea to feed. He explicitly mentions Lamarck in his discussion of a burrowing rodent, the tucutuco, in which the eyes seem to be degenerating. In the Falklands he encountered a goose that could no longer fly, though it could move over the surface of the water quite rapidly by a combination of paddling and flapping. He discusses the habit of cuckoos and other birds of laying eggs in the nests of birds of other species, a phenomenon that he later interpreted in evolutionary terms. Anybody would have been impressed by the extinct fossil mammals, many of them of large body size, that Darwin discovered. He, however, was impressed by their close relationship to smaller animals that were still living. It was an important clue to evolution. The new species of ostrich that he discovered in Patagonia was also a hint about evolution, for it replaced another one geographically. A poisonous snake, *Trigonocephalus*, behaves like a rat-
tle-snake but lacks a rattle and instead beats its tail against vegetation. Darwin used this as an example of change in behavior setting the stage for change in structure.

In addition to preparing the Journal for publication, Darwin was very active dealing with his collections, presenting his ideas to the scientific community, and otherwise furthering his career. He got to know many of the leading scientists of the day, the most important being Lyell, and became a participant in the activities of scientific organizations such as the Geological Society of London. Meanwhile he married and took a house in London. However, his health began to decline and in 1842 he and his family moved to the village of Downe, south of London. His residence was called “Down House” and he gave his address as “Down, Beckenham, Kent” or “Down, Bromley, Kent.” The reasons for Darwin’s ill health, which kept him largely incapacitated for much of his career, have been the subject of much speculation. At the very least we can say that his condition, whatever its physical basis may have been, was exacerbated by anxiety and stress.

Darwin had neither the time nor the expertise that would have been necessary for him to deal with all of his collections himself. They had to be turned over to specialists for interpretation. Preliminary publications on birds that were studied by John Gould reflected some of the evidence for evolution. Darwin asked various specialists to describe the materials, and obtained a grant to edit and publish the Zoology of the Voyage. This work, which appeared in installments over a period of several years, contains Darwin’s commentary on biogeography, behavior and other matters. Other collections, including those of plants and various groups of insects were treated separately. Darwin reserved some of the marine biological materials for himself, but he did not do much with them until after he got the geology out of the way.

DARWIN’S GEOLOGICAL CONTRIBUTIONS

Darwin dealt with the geology of the voyage in a few short papers and in a series of three books: *The Structure and Distribution of Coral Reefs* (1842; 2nd ed. 1874), *Geological Observations on the Volcanic Islands*... (1844), and *Geological Observations on South America* (1846). Much of the material in these books is presented in more preliminary and less technical form in the Journal. Although *Reefs* was published first, the sequence of Darwin’s research makes it more readily understood if the three are read in the opposite order than the chronological sequence in which they appeared.

Darwin’s geological books are of considerable philosophical and methodological interest and cast much light on his intellect and its development. A particularly useful document for understanding how he became a geologist is a chapter entitled Geology that he wrote for the British Navy’s *Manual of Scientific Enquiry*, edited by Sir John Herschel and first published in 1849. In addition to giving much practical advice, it advises the beginner on how to become a geologist. One can read it as a reflection of how Darwin taught himself to become a great master of that discipline. Among other things, Darwin suggests that one should read, then observe, and compare what one has seen with what one has read. This is important, for, contrary to the impression that one might get from the vast amount of factual detail that goes into his works, Darwin believed that theory should be one’s guide in the conduct of scientific research. Not everybody shared that view in the early nineteenth century, so the following passage from a letter to Henry Fawcett dated September 18, 1861 is worth quoting: “About thirty years ago there was much talk that geologists ought only to observe and not theorise; and I well remember some one saying that at this rate a man might as well go into a gravel-pit and count the pebbles and describe the colours. How odd it is that anyone should not see that all observation must be for or against some view if it is to be of any service!” (Darwin and Seward, 1903.)

To understand Darwin’s geological reasoning we need to consider some of the ideas of Lyell that influenced him. Lyell advocated a “steady-state” view of the world in agreement with his predecessors Hutton and Playfair. Indeed the notion of an eternal world that undergoes cyclical change, coming back to more or less the same condition, goes back to Aristotle’s treatise *Meteorologia*. The earth might change through erosion in one place accompanied by deposition in another. That implied that the crust of the earth might move up and down and also that the areas exposed as land might occupy quite different positions with the passage of time. Lyell also thought that the living inhabitants of the earth differ from one another at different times. However, he did not believe that there is any sign of progressive, or unidirectional, change in the fossil record. He took it as a methodological assumption that in reconstructing the history of the past we should begin by invoking only
the sort of causes that are “now in operation,” as he put it. That tended to rule out catastrophes, such as universal deluges, giving the terms “uniformitarianism” and “catastrophism” for the alternative positions. Catastrophes might have occurred, but the progress of science would be more effective if they were invoked only as a last resort. One thing that never changes, however, is the laws of nature. Any reconstruction of the past history of the earth must be consistent with the laws of nature, understood as regularities that must happen irrespective of time and place, such as the laws of gravity. Geology, like other historical sciences, creates explanatory narratives based on a combination of particular facts and nature’s timeless uniformities.

Much of what Darwin was doing for South American geology was working out the sequences in which layers of rock (strata) were laid down. The basic intellectual instrument for such historical reconstruction is the “principle of superposition,” which is attributed to the seventeenth-century Danish naturalist Steno. In the case of sandstone, for example, new layers can only be deposited on top of layers that already exist. There is no way in which water carrying sand can slip under a layer of rock and deposit a bed of sandstone in that position. Therefore, the younger strata overlie the older ones. There are all sorts of complications, not the least of which is that a whole series of strata can be overturned. However, there are additional principles for deciding “which way is up.” A temporal succession of strata gives relative times, but it does not give the sort of absolute times that are provided in terms of number of years. Although the plants and animals that are present at any time differ from place to place, the same species often ranges over considerable areas, and the co-occurrence of such a species in deposits at different places is evidence that those deposits are contemporaneous. On the other hand, the fossils in older deposits are increasingly different from those in younger ones. Lyell reasoned that he could date the deposits approximately by determining the proportion of species that are still in existence. The larger the proportion of extant rather than extinct species, the newer the rocks. It was this kind of inference that Darwin was applying in much of his geological research, and understanding that approach makes it much easier to follow his reasoning.

Treating, as noted above, the geology of the voyage in a conceptual order rather than by year of publication, let us now consider its third volume, *Geological Observations on South America*, first published in 1846. It treats research that preceded that on islands and reefs and paved the way for it. The grand theme of the whole series is the gradual upheaval and subsidence of the land on a global scale, something that was very much in tune with Lyell’s views. We should note at the beginning some later developments in the history of geology of which Darwin was unaware. Firstly, although the land rises and falls much as Darwin believed, so too does the level of the sea, partly as a result of glaciers forming and melting. Secondly, the land moves laterally, not just up and down. That aspect of the history of the earth was not well understood until the emergence of plate tectonics in the second half of the twentieth century. The earth’s crust is made up of plates of rock that are continually being formed and destroyed. The subduction of one plate under another is a major reason for the formation of mountain chains, and it also accounts for areas of vulcanism and earthquakes in bands around the world. Darwin could see that there was a causal link between uplift and vulcanism. He explained it in terms of molten lava getting injected under rock. This is not exactly what happened, but it does not affect the correlation that he observed or the legitimacy of his coral reef theory.

Darwin begins with an account of uplift on the eastern coast of South America. He studied series of step-like terraces rising above sea level. These were associated with the shells of marine animals, indicating that they had formerly been at sea level. The shells were very much like those living at the time, but they were sometimes associated with the remains of extinct fossil mammals. The elevation seemed to have taken place gradually. He then discusses similar evidence from the western coast. He was present during the earthquake that rocked the region on February 20, 1835 and therefore was able to document an uplift of several feet. He also drew upon published accounts of a great earthquake in 1822. In a third chapter he discusses the related topic of erosion and deposition of sediment as well as the formation of valleys and salt deposits. The fourth chapter, on the Pampas formations, is of particular interest because it discusses the fossil mammals that helped to convince Darwin that evolution has occurred. The remains of large, extinct mammals were found together with shells of marine animal species that were still living on the nearby coast. Not only were they taxonomically indistinguishable, they seemed to be in the same relative proportions, indicating that the marine environ-
The fifth chapter deals with the older, Tertiary formations. Darwin established the relative dates of fossiliferous strata both by superposition and by the proportion of living species of shells in them to extinct ones. He gives some rather forced arguments for the temperature not having changed much. The chapter ends with a discussion on the incompleteness of the fossil record, a topic that Darwin discussed at great length in *The Origin of Species*. The sixth chapter discusses the igneous and metamorphic rocks and the topic of cleavage and foliation. The 7th and 8th (final) chapters deal with the geology of the Cordillera of the Andes. Darwin had crossed the Andes in late March and early April of 1835, and during that trip he made extensive drawings. He was able to document both subsidence and elevation over long periods of time. He explains why the fossil record is not as complete as was generally believed. And he urges the point that change has occurred gradually, step-wise, and over long periods of time.

The second volume of the geology of the voyage, published in 1844, was entitled *Geological Observations on Volcanic Islands, with Brief Notices on the Geology of Australia and the Cape of Good Hope*. At many times during the *Beagle* voyage Darwin had opportunity to study volcanic islands. Lyell had opposed the notion of von Buch and others that volcanic craters should be treated as “craters of elevation.” According to this view a crater would begin as a sort of blister on the earth’s surface and then would collapse leaving a depression at the center. Darwin provided further evidence that the craters had been gradually built up by deposits of lava. Lyell had suggested that coral atolls had formed on the rims of craters. Part of the Admiralty’s instructions to FitzRoy had been to study such atolls with the end in mind of investigating such matters. During the course of the voyage Darwin reflected upon subsidence and elevation, and, while still in South America, formulated his own theory of coral formations. This interest helps one to form a more balanced view of his activities while in the Galapagos. The reader who wants to study the development of Darwin’s thinking should realize from the outset that his observations are not presented in chronological order, even though St. Jago, the first island he visited and one that was revisited at the end of the voyage, is treated first. Rather the materials are arranged so as to show how volcanic islands are formed. He begins with islands that are close to continents and contain a substantial amount of sedimentary rock characteristic of such areas, and those that are more distant from the land and consist mainly of volcanic material. The distinction between continental and oceanic islands was fundamental to Darwin’s island biogeography but he does not refer to that explicitly here.

On Coral Reefs

The first volume of the geology of the voyage, entitled *The Structure and Distribution of Coral Reefs*, was first published in 1842. A second edition, considerably revised, was published in 1876, and a third, posthumous, one in 1889. The second edition includes response to criticisms by various contemporary scientists, reflecting the fact that although the theory was immediately accepted by geologists it later came under fire from all sorts of quarters. It is no coincidence that much of the criticism came from persons, mainly zoologists, who were also critical of Darwin’s evolutionary ideas. The debates continued until shortly after the Second World War, when soundings and drilling made it clear that Darwin’s basic ideas were correct. Darwin’s views, however, were supplemented, especially by the work of James Dwight Dana, Reginald A. Daly and William Morris Davis, and more recently by studies related to the modern theory of plate tectonics.

Coral Reefs begins with a brief introduction that explains the problem and defines his three classes of coral reefs. Fringing reefs are located next to the shore and often surround islands (Fig. 1A). Barrier reefs are separated from shore by a body of water called a lagoon that generally opens into the sea by channels (Fig. 1B). They are often capped by islets of land, and may encircle an entire island. In some cases there is no such island, but just a lagoon surrounded by a reef. Darwin briefly explains that the sequence is a developmental one, the result of corals having grown upward only in shallow water as the land has subsided. He then devotes three chapters to detailed descriptions of the three classes of reefs, beginning with atolls, and ending with fringing reefs. The first of these atolls is Keeling Atoll, which he and Fitzroy studied during the voyage of the *Beagle*. He includes a considerable amount of material on how the corals and other animals grow and interact with one another, and provides evidence that the archipelago has sunk and has the kind of shape that one would expect if corals (and other reef building organisms) had grown up on a sinking island. He compares the other known
examples of atolls before taking up the barrier reefs such as those off New Caledonia and the eastern coast of Australia. The chapter on fringing reefs begins with Mauritius, which Darwin had also visited when on the Beagle. He again compares quite a variety of reefs.

A separate chapter is devoted to the conditions that are favorable to the growth and prosperity of corals and reefs, and to their rate of growth and related topics. He was able to establish that reef-forming corals grow only in warm, shallow waters. He knew that they are carnivores, but the fact that reef-forming corals are largely dependent upon symbiotic algae in their tissues for their energy supply was not discovered or fully appreciated until around the middle of the twentieth century. The absence of coral formations in some warmer areas puzzled Darwin. Their limited ability to cope with sediment still seems a valid explanation. He did not however appreciate the effects of el niño events and other perturbations that make for the sort of unstable habitat in which corals do not flourish. Darwin’s chapter on such physiological and ecological topics provided part of the explanation for the distribution of the reefs. The rest of the distribution pattern was due to the long term geological changes that had been taking place all over the world. He then relates the two by proposing that what kind of reef occurs in a given place depends upon whether the crust of the earth has been in the process of uplift or subsidence. Given his theory that subsidence is compensated for by uplift due to volcanic activity, the type of reef should correlate with it. Darwin makes this argument strikingly by means of a map in which the different types of reefs are shown to have the properties that this hypothesis predicts. The fringing reefs occur near to areas of volcanic activity, whereas the barrier reefs, and especially the atolls, tend to be located far from such areas. It is a fine example of Darwin’s scientific method.

Darwin published some shorter geological papers that deserve mention. These include several in support of his and Lyell’s interpretation of the transport of sediments and related topics. The possibility of extensive glaciation and its effects on the level of the sea became an active topic for investigation but Darwin was more or less on the losing side of that debate. His paper on the Parallel Roads of Glen Roy and Lochaber was an effort to explain some bench marks in Scotland. By analogy with what he had found in South America, he tried to explain them as the result of the rise of the land and its occasional erosion by the sea. It turned out that they were the product of lakes that were dammed by glaciers. Another geological topic that attracted his interest was the effects of earthworms in forming the soil and changing the landscape. He returned to that in his last book, supplemented by much later research on the behavior of the worms.

ON BARNACLES

When Darwin finished his geological works in 1846, he planned to write a few short papers on zoology based on specimens that he had collected during his voyage and then prepare his work on evolution for publication. That plan succeeded insofar as he published some short papers on flatworms and one on a little-known pelagic creature, the chaetognath Sagitta. One animal that interested him was an aberrant barnacle that did not fit into the existing schemes of classification. To describe it properly he needed to dissect and compare some other barnacles. One thing led to another, and he wound up revising the classification of the entire subclass Cirripedia and devoting a monograph to them well over a thousand pages long. I say “a” monograph in spite of the fact that he was compelled to publish the parts on fossil cirripedes
separately. This was because of the pettiness of the institutions that sponsored the publication.

The barnacle research delayed the publication of Darwin’s evolutionary theory for some eight years. Many reasons have been given for the delay. The best of these is that he was obsessive about details in all of his scientific work and wanted to do the job as well as possible. The results are more easy to document. His monograph changed one of the least known groups of animals into one of the best known. It also established his reputation as a comparative anatomist, systematist and paleontologist, one who could speak with authority about all sorts of matters. It was not obvious to all his readers at the time that the Monograph was a book on evolutionary comparative anatomy but that is easy to make out in retrospect. Darwin even refers to the genealogical tree of these organisms. However, the evolutionism was only implicit, and the language could be read metaphorically. Darwin showed how the various groups of barnacles could be derived from common ancestors and produced a classification that is roughly consistent with that genealogy. He gave interesting examples, not all of which are now considered correct, of parts changing their function in the course of evolution. In some ways the most remarkable findings were the dwarf males that had evolved within the basically hermaphroditic group. His work on their reproduction led him to realize that hermaphrodites are not, as had been widely assumed, self-fertilizing animals, and consequently that sex is far more important than his contemporaries believed. This initiated Darwin’s extensive research on sex, including much comparative and experimental work on plants. He realized that sex is somehow connected with variability, and for him one of the most important results of the barnacle research was the realization that natural populations are highly variable. Variation was exceedingly important for Darwin because it is a necessary condition for evolution by means of natural selection.

Readers of Darwin may reasonably defer, or omit altogether, reading the Monograph. It is not an easy book to read, even if one has taken a course on invertebrate zoology. However, one might want to sample some of the more accessible passages. The volume on living Lepadidae (stalked cirripedes) begins with some general material on the comparative anatomy and embryology of the group (pp. 1–66) that gives a fair idea of how Darwin thought that the barnacles originated and evolved. The next two hundred pages or so provide descriptions of various species that are not of much general interest. One might want to read the parts on the peculiar hermaphrodites, males and females, though the summary on pages 281 to 293 gives the main points and their implications. The section on the genus Lithotrya includes material on how these animals burrow that provides an interesting example of Darwin’s evolutionary approach to functional anatomy and behavior. It might be best to read these passages after some of the later works in which the evolutionary thinking is explicit. The volume on living Balanidae and other cirripedes begins with an introduction that explains the anatomy. Well worth reading are the discussion on pages 9 to 22 on the general morphology of these animals and the one on their sexual peculiarities that follows on pages 23 to 30. There are further discussions on the females and dwarf males of the burrowing barnacles Alcippe and Cryptophialus.

EVOLUTION AND NATURAL SELECTION: THE ORIGIN OF SPECIES

After completing the barnacle monograph, Darwin began to work up his materials on evolution and natural selection. He gathered new information from the literature, through his own experiments, and by requesting it from his informants. Although most of these informants did not know what Darwin was up to, he did confide in his botanist friend Joseph Dalton Hooker and later in another botanist, Asa Gray of Harvard University. Among the many persons with whom he corresponded was Alfred Russel Wallace, who in September of 1855 published a paper entitled “On the law which has regulated the introduction of new species.” Darwin told Wallace that he was working on a theory, but did not say what it was, and added that it would be some time before he published. In June, 1858 Darwin was working on a long book manuscript entitled *Natural Selection*, when a letter arrived from Wallace, along with a manuscript of a paper on evolution by natural selection. This naturally created quite a stir. The upshot was that a joint publication was assembled and read to the Linnaean Society on July 1, establishing Darwin and Wallace as co-discoverers. It appeared in print some time in August. Wallace was in the Malay Archipelago at the time and did not find out about this arrangement until much later. He never objected to it.

Whatever we may think of what took place, the joint publication is readily available and well worth reading. It begins with an introductory letter by Lyell.
and Hooker providing a reasonably accurate account of the circumstances. There follows a section of a chapter from Darwin’s “Essay” of 1844. It seems to have been edited slightly, but the changes are minor and do not affect the content. At the end there is a paragraph on sexual selection, something that had not occurred to Wallace, and this is important because it establishes that Darwin’s theory was somewhat more general than Wallace’s. There follows a brief explanation of natural selection that was included with a letter to Gray dated September 5, 1857. It too seems to have been slightly edited but without any substantive changes. At the end is a discussion on the principle of the divergence of character, which explains the diversification of life in ecological terms. Although one commentator suggested that Darwin took the principle of the divergence of character from Wallace’s manuscript, there is no trace of it in the original. It was something that Darwin thought of in the 1850s, so it is present in the letter but not in the “Essay.” Wallace’s section is very well written and easier to follow than Darwin’s terse accounts. Wallace emphasized the selection of varieties as well as organisms, and he seems not to have made the distinction as clearly as Darwin did. Both Darwin and Wallace emphasized the analogy between artificial and natural selection. They focused mainly on selection as a mechanism for producing adaptation and said very little about the long-term effects and larger consequences. For that reason, and perhaps others, the paper had little immediate effect on Darwin’s contemporaries, other than indicating that something was in the works. The theory had to be fully explicated before it would be understood.

Darwin soon began to write an “abstract” of his unfinished book manuscript. It ultimately became The Origin of Species. The first edition of the Origin is probably the best choice from the reader’s point of view. It is the original statement of Darwin’s views, and later editions became complicated as he responded to various criticisms. Therefore we will begin with an examination of the first edition and afterward consider what changes were made in the later ones.

Darwin’s claim, in the Introduction, that he worked by patiently accumulating facts before allowing himself to speculate must be taken with a block of salt. Rather than following the “Baconian” approach that was widely popular in his day, he took theory as his guide, using the facts to test hypotheses. The approach that he used was more in line with what has been called the hypothetico-deductive approach, or as some would say, the argument to the best explanation. The rationale of his “one long argument” is that evolution by natural selection explains a wide range of phenomena that are otherwise inexplicable in scientific terms. Throughout the work he opposes his hypothesis to special creation, but he also provides reasons for rejecting the views of Lamarck and others. The first chapter explains the process of natural selection using the analogy of artificial selection of domesticated animals and plants. The reason for the analogy is not just to make the mechanism seem plausible. Rather it is to establish selection combined with variation as something more than purely conjectural. Selection really does produce change: it is a vera causa. (Whether it suffices to account for the diversification of life from one or a few ancestral forms is of course another matter.) In addition to selection Darwin invokes correlated growth or variability, something that later came to be discussed under the rubric of pleiotropy. Darwin knew, for example, that white cats with blue eyes tend to be deaf. So somebody trying to produce a breed of white cats with blue eyes might inadvertently get ones that were deaf as well. This was one of several mechanisms that Darwin invoked in addition to natural selection. (Others are use and disuse, inherited habit, and sexual selection.) He treats the breeds of domesticated animals and plants as analogous to what we would call incipient species.

In Chapter II Darwin considers variation in nature, but his main concern is to show that there is no clear break between species and varieties. Speciation as he saw it is a gradual process, and one would only expect an unbroken continuum in the degree of distinctness. As he put it, there would be no “essential” difference between species and varieties. This discussion can be confusing to the reader and for more than one reason. We now distinguish between 1) the species category, in other words, “species” in the abstract, and 2) particular species taxa, such as Homo sapiens, which are generally considered concrete populations, composite wholes or, in other words, individuals in a technical philosophical sense. In discussing whether taxonomic groups are “real” it makes an enormous difference whether we are talking about the distinction between species and subspecies on the one hand, or something like Homo sapiens or Drosophila pseudoobscura on the other. Furthermore, in this section, Darwin is discussing the species concepts of other authors, whereas his own view of such matters is expounded in a later chapter. The fact that
Some of the principals who played leading roles in Darwin’s scientific career

(A) Louis Agassiz; (B) Asa Gray; (C) Anton Dohrn; (D) George Rolleston; (E) Ernst Haeckel; (F) Joseph Hooker; (G) Thomas Huxley; (H) Charles Lyell; (I) Richard Owen
Some of the principals who played leading roles in Darwin’s scientific career

(J) Adam Sedgwick; (K) Alfred Russell Wallace; (L) Robert Fritz-Roy; (M) John Stevens Henslow; (N) Jean Baptiste Lamark; (O) John Gould; (P) Herbert Spencer; (Q) Étienne Geoffrey Saint-Hilaire; (R) Thomas Robert Malthus
genera, species and varieties have the same hierarchical pattern of diversity of groups within groups makes sense if and only if they are all stages in a single process.

Darwin explains what he calls the struggle for existence, in other words, competition in Chapter III. He takes care to point out that what really matters is reproductive success. In order to do that he develops the basic principles of modern ecology, which is hardly surprising given that he founded that science in its modern form. (The word ecology was coined by Darwin’s German follower Ernst Haeckel.) One of the more important points that he makes is that the competition will be most severe between close relatives.

Darwin explains natural selection, sexual selection, and evolution in the long term in Chapter IV. Natural selection leads organisms to diversify and to occupy different places in the natural economy. Darwin’s notion of a place in the economy of nature is roughly equivalent to that of a niche in the sense that the term was used by such later ecologists as Elton and Gause, who derived much of their thinking from him. In a very important passage, Darwin notes that natural selection cannot modify the structure of one species solely for the good of another. That kind of “altruism” he argues does not and cannot exist. One merit of a good theory is that it makes strong predictions like that, ones that may have been quite unexpected. Sexual selection is only briefly discussed, but it is crucial to the argument. If all that really matters is out-reproducing organisms of one’s own species, then it makes sense that some features would have no other function, and even be deleterious to the welfare of that species. Darwin saw the combat between males and efforts to woo the females as examples of precisely such maladaptation. Again, this is a crucial move, and one that has often been misunderstood. Darwin believed that there are three kinds of selection: artificial, sexual and natural. His theory made different predictions for each of these, and sexual selection was therefore compelling evidence for selection theory in general. He gives a few details about natural selection that are developed in later works on pollination and other topics, including the previously unexpected vast amount of sexuality in the natural world. Then he proposes that competition over long periods of time will cause organisms to diversify while the intermediate forms will often become extinct. The result is a pattern that relates the taxonomic hierarchy with its groups within groups and the gaps that often separate them to the competitive process. The tree diagram makes sense of taxonomy in a way that creation does not.

In Chapter V, Darwin discusses the laws of variation. One of the philosophical points that he seeks to make in this chapter is that variation is not (as is often said) random, in the sense that one change is just as likely as any other. It displays its own laws, or perhaps it would be better to say rules. Among these regularities he gives the principle of the correlation of growth mentioned above. He shows how natural selection makes sense out of rudimentary organs and throwbacks or atavisms. This chapter is really about embryology, though that may not be obvious. Modern genetics, with its notions of pleiotropy and the like, did not come into existence until after the rediscovery of Mendel’s work around 1900. Darwin’s way of approaching these matters looks remarkably like the kind of “evo-devo” that became popular around 1980.

Darwin considers what he calls difficulties with respect to his theory in Chapter VI, and indeed continues the same theme in the next four. We need to avoid getting the impression that he was immunizing his theory from criticism or explaining away unpleasant facts. On the contrary, the difficulties in question played an important strategic role in his argument. Much as he argued that there were indeed phenomena that his theory could not explain but that such do not exist, he showed that the difficulties in question were more apparent rather than real. Indeed, he was often able to turn an argument against his theory on its head, thereby converting an argument against it into one in favor of it. Raising objections and shooting them down was an effective rhetorical ploy. He gives the stock example of the vertebrate eye. He says that his theory would break down if such an organ could not have been formed by small steps, again denying the claim. He explains why not all characters are adaptive.

In the sixth edition of the Origin, Darwin added another chapter to allow for extensive rebuttal of his critics, but the order of the chapters remained the same. Chapter VII (VIII in the 6th edition) deals with instincts, phenomena that some of his contemporaries had regarded as miraculous. Darwin shows for instance that a bee does not have to be a mathematician to create a hexagonal cell of wax. But the most compelling example is that of the neuter castes of social insects such as ants, bees and termites. How could such colonies evolve through natural selection when the workers are sterile? Under ordinary circum-
stances natural selection should not favor sterility. Darwin reasoned that in social insects the unit that gets selected is the family. He also invokes breeding from the same stock, or what later came to be called “kin selection.” Chapter VIII deals with the sterility of hybrids. Any degree of sterility would tend to decrease an organism’s reproductive success, and natural selection would therefore prevent it from evolving. Darwin answers that by maintaining that such sterility is not an adaptation, but rather an incidental byproduct of some other change. Chapters IX and X address the imperfection of the fossil record. As a leading geologist and an expert on fossil barnacles Darwin was able to speak with great authority on that topic. Negative evidence in general is to be viewed with skepticism, and in the case of missing fossils Darwin provides reasons for thinking that the fossil record is even more fragmentary than had been believed. Fossils are formed only under favorable conditions and they often get destroyed. As it turned out, the point that the evidence was negative created a strong incentive for paleontologists to search for more specimens, and the fossil record became considerably less fragmentary even in Darwin’s lifetime. Darwin also shows how the fossil record makes sense in view of his diversity model and argues that his theory explains the apparent progress that has occurred in the organization of plants and animals in geological time. Such progressive trends were something that Lyell had denied.

Darwin proceeds in Chapters XI and XII to consider a much less fragmentary body of evidence: biogeography. It was biogeography that first convinced Darwin that evolution has in fact occurred, and biogeography was the most compelling evidence for it in his day. It remains so in ours. The kind of biogeography that was practiced by Alexander von Humboldt attempted to relate distribution patterns to climate and other physical conditions of life and that perspective has never been abandoned altogether by biogeographers and ecologists. But that approach was ahistorical, whereas descent with modification, with taxonomic groups conceived of as branches of a genealogical tree, provided the basis for an evolutionary approach to the subject. Animals and plants have moved about as they have diversified, and their ability to do so has been limited by barriers. Terrestrial animals and plants find it difficult to cross bodies of water, deserts and mountain ranges. Marine ones would be blocked by land masses. By analyzing the different kinds of barriers and relating these to the ability of the animals and plants to move about, that aspect of the history of life could be reconstructed. Species could be traced to their point of origin. Darwin considers the means by which organisms may have crossed barriers. He had experimented on the effects of seawater on the seeds of terrestrial plants, and found that many of them could survive for long periods. His discussion on the glacial period accounts for many distribution patterns in terms of changes in the climate. Darwin’s delay in publishing resulted in Edward Forbes getting credit for some ideas about glaciation and plant distribution.

It is particularly in Chapter XII that Darwin shows how many facts make sense only in terms of evolution. The fresh water and marine organisms show characteristic patterns of distribution as a result of their mechanisms of dispersal. But the peculiar biotas of oceanic islands provide perhaps the most compelling evidence. Frogs and other amphibians, he points out, have very little capacity for surviving in seawater either as eggs or adults, and they are absent from oceanic islands. And the older islands and island groups are often inhabited by groups of closely related species that occur nowhere else (endemics). Thus, for example, his observations on the Galapagos birds are easily explained. This chapter marks the beginnings of insular biogeography, a topic that was pursued to great effect by Darwin’s supporters, especially Joseph Hooker and Alfred Russel Wallace.

In Chapter XIII Darwin argues for his version of evolutionary theory by showing how it makes sense of classification and the data upon which it had been based. His biogeographical arguments depended upon uniting the data of distribution with the existing classification systems, which his predecessors had not interpreted as having evolutionary significance. He proposes that the Linnean hierarchy with its groups within groups is intelligible on the basis of each group being derived from a common ancestor. He explains why characters important in classification are not necessarily the ones that are most important in the life of the organisms, and why larger groups of animals seem to be derived from a common plan. He likewise explains why embryology provides so much valuable evidence for classification at higher levels. In this connection he discusses how natural selection affects the modification of the entire life cycle of the organisms, and in so doing created the approach to evolutionary developmental biology that was taken up by Fritz Müller, Ernst Haeckel and many others. The idea that evolution occurs by a modification of devel-
opmental processes is one of Darwin’s most important contributions to biology. More than just a way of reconstructing evolutionary history, it is fundamental to his views on variation. In discussing rudimentary organs such as the teeth in the embryos of whales that are toothless as adults, Darwin argues again that these at last become plainly intelligible as traces of earlier conditions.

In Chapter XIV Darwin briefly recapitulates his main arguments, dismissing the objections and emphasizing the explanatory value of the theory. The attentive reader may note that although natural selection has been explained, the arguments for evolution are the more compelling ones. Darwin suggests that the dead weight of tradition is apt to create much resistance to his views. Then he switches his argument strategy and predicts a major revolution in the life of the intellect. Psychology, he says, will be based on a new foundation. This follows what is perhaps the greatest understatement in the history of English literature: “Light will be thrown on the origin of man and his history.” Finally he ends with an eloquent passage implicitly comparing his accomplishment to that of Newton.

The first edition of the Origin was published late in 1859 and immediately sold out. The second, which appeared a few weeks later, was not much changed, although some minor errors were corrected. Darwin also added a reference to the Creator. It is uncertain whether he personally considered this particular emendation an improvement. The book of course created an immense uproar. In later editions, Darwin responded to criticisms and incorporated much new material. The details of the emendations are perhaps of minor interest to the readers of this Guide, but it seems a good idea to discuss some of the most important changes that Darwin made in later editions. Not the least reason for doing so is that it shows how the book itself evolved.

To the third edition of the Origin, finished in early 1861, Darwin added an “Historical Sketch” discussing his predecessors. It was modified in later editions, and the total number of these predecessors was brought up to thirty. Some of them are more than dubious, for example Aristotle and Lorenz Oken, both of whom believed in spontaneous generation. Erasmus Darwin, Lamarck, both Étienne Geoffroy Saint-Hilaire and his son Isidore, Herbert Spencer, and their followers were committed to evolution. Others, as Darwin points out, made statements that were vague or noncommittal. A few, such as Patrick Matthew, seem to have thought of natural selection, but they neither perceived its significance nor worked out its implications. Darwin says much about Richard Owen, some of whose claims, he believed, were misleading and indeed downright dishonest. It is clear from his publications that Owen straddled the fence about various issues and was not always forthright in his arguments. The “Sketch” was somewhat revised in the fourth and fifth editions. There were quite a number of other changes in the third edition. One of the most interesting is Darwin’s response to objections to the use of the term “natural selection.” Much understanding had arisen because of his language, he says, but metaphor ought not to be taken literally. He also clarified his views on progress.

The fourth edition of the Origin, written in early 1866, was extensively revised. A great deal had happened in the six years that had passed since the first was published. Evolution had become a very popular topic of discussion and not just among the scholarly community. The book had been translated into several languages and was well known all over the world. But most important, Darwin had attracted an enthusiastic following, and one that included many able scientists as well as informants who were happy to provide him with the information he needed. Darwin now incorporated the work of Wallace on geographical distribution and of Bates on mimicry in butterflies. He revised and enlarged the section on embryology in the light of the contributions of Fritz Müller and John Lubbock. And he filled in many details. Darwin was now taking the offensive.

The fifth edition of the Origin, finished in early 1869, was the first to use Herbert Spencer’s expression “the survival of the fittest.” It is also the first to discuss Ernst Haeckel’s notions about phylogeny. By this time Darwin had a strong following in Germany. He was also getting help from paleontology, and cites the contributions of Gaudry and of Huxley. The fossil record was becoming less and less of a problem. So far as the scientific community was concerned, the battle for evolution was over. The question was no longer whether evolution has happened, but how and why.

To the sixth (1872) edition, which was the last, Darwin appended a glossary. It was not written by Darwin himself, but by William S. Dallas, and to what extent Darwin approved of it is not quite clear. A more important addition was an entire chapter (Chapter VII) on “miscellaneous objections” to natural selection. Although some of this chapter is revised
from the previous edition, much of it is new. Darwin answers objections that had been raised by several eminent scientists. But most of the chapter is directed against the arguments of St. George Mivart, especially in his book *On the Genesis of Species*. Mivart, an able vertebrate anatomist, was a Roman Catholic convert. He tried to come up with a version of evolutionary biology that to some extent accommodated his own philosophical and religious opinions. Ultimately he was excommunicated. Darwin’s strategy was to take Mivart very seriously indeed, portraying him as one who had marshaled every argument against natural selection that he and others had thought of, and with “admirable art and force.” He then proceeded to demolish all of Mivart’s arguments. Darwin and his followers could now proclaim victory and another edition of the *Origin* would not be needed.

ON ORCHIDS

Darwin’s next book, entitled *On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing*, was published in 1862. A second, significantly revised, edition, with a slightly different title, appeared in 1877. Since completing the *Origin* Darwin had become increasingly active in research on various aspects of floral biology, the outgrowth of his interests in pollination, fertilization, hybridization and sex, and had begun publishing shorter papers on such topics. *Orchids* was the first of several books on the reproduction and physiology of plants. The book deals with the symbiosis and coadaptation of flowers and the insects that pollinate them. As such it was very important in establishing the science of pollination ecology, for the book inspired a great deal of empirical research. It has considerable relevance from the point of view of scientific methodology, for it provides good examples of how a biologist can ascertain the functions of parts by experimenting and showing how the flowers are minutely adjusted with the effect of transferring pollen from one organism to another. It also suggests how an historical approach to such questions can facilitate investigation. But it has deeper philosophical significance for it addresses the very notion of teleology, or purposefulness, in organic beings that Darwin overthrew. Discussion of that topic has been confused in the philosophical literature, and we need to make some important distinctions. The notion of “teleology” or “purpose” makes sense where something results from the activities of an agent with intentions, especially conscious ones. Before Darwin it seemed perfectly reasonable to attribute the marvelous adaptations of plants and animals, including ones that we now know do not really exist, to God. Indeed, such adaptations served as the basis for the “argument from design,” which was thought to justify our belief in Him. Natural theology, as distinct from revealed theology, was an important part of a clergymen’s training when Darwin was preparing for that vocation. He was much impressed by William Paley’s exposition of it in his book on natural theology, in which it was argued that if one finds a watch, it implies the existence of a watchmaker. By analogy, one has to draw the same conclusion for animals and plants. As Paley put it, there cannot be contrivance without a contriver. The title of Darwin’s book is, in fact, ironic, for he shows how natural selection can produce a marvelous range of adaptations so that no contriver is necessary. Indeed, the contrivances look more like contraptions. Darwin compared his book to the series of works on natural theology called the Bridgewater Treatises (*On the Power, Wisdom and Goodness of God, as Manifested in the Creation*), after the nobleman who endowed them. Of course it had the opposite intent. At the present time it is unfortunate that many authors still use such terms as “contrivance” and “design” when speaking of organic adaptations. In so doing they may have an excuse, insofar as such terms might be used metaphorically. But such language confuses lay persons and using it is intellectually irresponsible unless one really believes that supernatural agency is somehow responsible for the data of biology.

The other philosophical problem has to do with ambiguities in the way that philosophers have used the word “teleology.” That term has come down to us from pre-Darwinian times, and has served as a rubric for all kinds of things, including intentional behavior, adaptation, function in the sense of how mechanisms work, and function in the sense of the role a part plays in the life of an organism. It now seems reasonable to speak of the function of a part as the role it currently plays in the life of an organism, and of adaptation as the process of attaining fitness, through natural selection or perhaps other mechanisms. The notion of a function as being what was selected for in the past does not work very well. Organs change their functions quite readily, and organisms are always evolving new ways to put them to work.

In Darwin’s day, there was a controversy as to whether anatomists should explain the properties of
organisms in terms of formal or final causes as Aristotelians have called them. One faction, which included the poet Goethe and the German Naturphilosophen, maintained that the only thing that matters is purely formal properties of animals and plants, such as their symmetry. The other faction, which is associated with Georges Cuvier and his many followers, maintained that what really matters is the final causes, which Cuvier defined not in terms of purpose but in terms of the conditions of existence. It was a kind of physiological necessity according to which, for example, a carnivorous animal has to have the wherewithal to subdue prey. There is obviously no reason why an anatomist cannot study organisms from both points of view. But the term “teleologist” in this connection, meant somebody who explained anatomy only in terms of “final” causes. It has sometimes been said that Darwin was a “teleologist” on the ground that he studied function as well as form. But in terms of the original controversy he definitely was not, and in view of his own philosophy the discussion is anachronistic. Darwin produced a new approach to anatomy, in which the versions of Platonism of the formalists and Aristotelianism of the finalists were both deprived of scientific legitimacy. Darwin firmly and explicitly rejects the interpretation of homology in terms of ideal types, archetypal patterns and the like, and says that the goal of comparative anatomy is the reconstruction of common ancestors that really existed in the natural world. A remark on rudimentary organs (Orchids, ed. II p. 203) is well worth quoting in this connection: “At a period not far distant, naturalists will hear with surprise, perhaps with derision, that grave and learned men formerly maintained that such useless organs were not remnants retained by inheritance, but were specially created and arranged in their proper places like dishes on a table (this is the simile of a distinguished botanist) by an Omnipotent hand ‘to complete the scheme of nature.’” (Incidentally, the botanist was Alphonse de Candolle.)

Darwin changed his views on form and function significantly by the time he did his work on orchids. Although he had included a lot of functional thinking in his barnacle monograph, he went along with the notion that classification is based largely on “trifling” characters as he put it. But in Orchids he takes pains to show that what appears to us to be of no physiological significance may be of crucial importance in fertilization. Therefore one must not presume that a part has no function, merely because none is obvious. On the other hand, Darwin was not a Panglossian adaptationist, who, like Leibniz and the philosopher Dr. Pangloss in Voltaire’s Candide, believed that this is the best of all possible worlds. Again, the contrivances look more like contraptions. Darwin showed that the properties of orchid flowers are the result of a long, historically contingent process. What has happened has depended upon the nature of the ancestors and the accidents of history. Organs have changed their functions, while often retaining vestiges of their former ones. Studying organisms from that point of view was a great novelty in Darwin’s approach to anatomy and physiology. It led to his follower Anton Dohrn proposing the principle of the succession of functions (Funktionswechsel) as an investigative tool.

Aside from such philosophical background, Orchids is a straight-forward description of the flowers and the means by which pollen is transferred from one to another of the same species. Darwin discusses his predecessors, including Christian Conrad Sprengel, whose book Das Entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen (The Mystery of Nature Revealed in the Structure and Fertilization of Flowers) he felt had received insufficient recognition. Evidently the book was called to his attention by the botanist Robert Brown soon after Darwin’s return from the Beagle voyage. The first edition of Orchids created an immense amount of interest, especially among botanists, and gave rise to a vast literature devoted to the biology of pollination. Those who helped to develop that branch of knowledge included a disproportionate number of those scientists who were exceptions to the rule that Darwin’s contemporaries accepted evolution but not natural selection. These included Fritz Müller and his brother Hermann, as well as Joseph Hooker and Asa Gray. The burgeoning literature led Darwin to publish a supplementary review in 1869, and a second edition in 1872. This edition provided much additional descriptive material and corrected some of Darwin’s earlier interpretations. However, the basic treatment of the subject remained the same. Because it suggests how Darwin’s ideas developed, perhaps the second edition is the best choice for most readers.

Fertilization in Plants and Related Topics

Although the next of Darwin’s books to be pub-
lished (in 1868) was *The Variation of Animals and Plants under Domestication*, it seems best to follow a conceptual order rather than a chronological one, and discuss two of his botanical works that, like *Orchids*, have to do with fertilization and related topics. These appeared at about the same time (November 10, 1876 and July 9, 1877) and again, for conceptual reasons it seems best to reverse the chronological order. This sequence is further justified because Darwin’s book *The Different Forms of Flowers on Plants of the Same Species* (1877) was preceded by quite a number of shorter publications on the same range of topics, and the book reiterates much of that already-published material. *The Effects of Cross and Self Fertilisation in the Vegetable Kingdom* (1876) presents the results of an experimental investigation carried out over a period of about eleven years.

The Different Forms of Flowers on Plants of the Same Species was first published in 1877. A second edition appeared in 1880. Whereas *Orchids* emphasizes adaptations that facilitate getting pollen from one flower to another, *Flowers* is mainly about adaptations that favor outcrossing. Darwin’s work on barnacles, which are hermaphroditic animals, led him to the conclusion that self-fertilization is deleterious and that hermaphrodites at least occasionally cross with other animals of the same species. For some reason outbreeding is advantageous. He compared some of the sexual arrangements in barnacles to those of plants. When he began to study plants he realized that outbreeding is even more important than he had realized. Before we go on, however, we need to explain some of the technical terminology. In zoology, an hermaphrodite is an animal that has the reproductive organs of both the male and the female sex in a single organism. Sometimes male and female organs are functional and present at the same time, in which case the animal is said to be a simultaneous hermaphrodite. If it changes sex, it is a sequential hermaphrodite. If male first, then female, it is a protandrous hermaphrodite; if female first, them male, it is a protogynous hermaphrodite. An animal with separate sexes, like ourselves, is a gonochorist. Some animals, such as oysters, switch back and forth, and are called alternating hermaphrodites. But sex life gets much more complicated in colonial animals and plants, where each zooid or flower may have one sex or two, and so too may the entire animal colony or flowering plant. The picturesque and metaphorical nomenclature, which, as Darwin remarks, goes back to Linnaeus, is based on treating the plant as a house and the flowers as beds. A monoecious plant is one that is both male and female, but the flowers are either male or female; the male and female parts live in the same house but occupy different beds. A dioecious plant is one in which all the flowers of a given plant are either male or female; the male and female parts occupy separate beds in different houses. An hermaphroditic plant is one in which all the flowers are both male and female; the male organs occupy the same beds with the female ones, and they all live in the same house. Things can get very complicated, because, for example, a species can consist of hermaphroditic plants together with some that have only male flowers in which case it is androdioecious (males in different houses).

This terminology reflects the complexity of nature. But Darwin found that reproductive biology in plants is even more complicated that that. Whether or not an hermaphrodite is able to self-fertilize, a separate-sexed animal or flower is unable to fertilize itself. Darwin discovered that in certain plants each flower has both male and female parts (anthers and pistils) but these parts are so arranged that crossing can only take place with flowers that have a different anatomy, so that there is something analogous to two sexes among the hermaphrodites. The plants are dimorphic. Then he found that there may be three different anatomical arrangements, such that we have something like three sexes in the same hermaphroditic species (trimorphic plants).

The arrangement was such that it favored a flower of each of the two or three morphs fertilizing a plant of a different morph. However, by accident or by experimental design, pollen could be transferred to a plant of the same morph. The former Darwin called “legitimate” crosses, the latter “illegitimate” ones. He undertook a long series of experiments in which he produced illegitimate crosses by transferring pollen to the adaptively inappropriate place. The goal was to find out to what extent an illegitimate cross might have an adverse effect, such as fewer or smaller seeds or offspring that were small in size or of low fertility. He showed that the illegitimate crosses were much like those between different species, sometimes producing no offspring at all. Darwin did not believe however that such sterility was an adaptation. Rather, he considered it an incidental consequence of the arrangement that furthered crossing. He was unable to conceive of a way in which selection could favor sterility as such, for it would lead to a reduced number of offspring.
Another case of floral dimorphism that interested Darwin was cleistogamic flowers. The Greek roots from which this term was coined literally mean “closed marriage.” The flowers do not open up and admit pollen or pollinators, but fertilize themselves, and seem to be specially adapted to reproducing in this manner. However, they occasionally open up, and therefore some outcrossing does take place. Darwin took this as another example of the fact that on occasion, at least, hermaphrodites cross with conspecific organisms. It confirmed the “Knight-Darwin Law” according to which “Nature abhors perpetual self-fertilization.”

The Effects of Cross and Self Fertilisation in the Vegetable Kingdom was published in November of 1876. Although it was reprinted several times, the book never appeared as a second edition. As he explains in the introduction, Darwin began his experiments on inbreeding as a result of work carried out for another purpose. He was surprised to observe that the offspring of self-fertilized plants of Linaria vulgaris were smaller and less vigorous than those that resulted from outcrossed ones. He then compared self-fertilized and cross-fertilized carnations (Dianthus caryophyllus) and other plants and got the same result. Therefore he carried out experiments over a period of eleven years, in which he compared the results of cross-fertilization and self-fertilization in a wide variety of plants (fifty-seven species, in fifty-two genera and thirty families). The experiments clearly showed that the products of cross-fertilization were larger and more vigorous than those of self-fertilization. Further experiments showed that the outcrossed plants were competitively superior. They also tended to live longer, and were more fertile.

In Chapter X, Darwin considers how plants are structurally and physiologically adapted so as to further cross-fertilization. Often this involves interaction with insects or birds, and Darwin shows how much of floral anatomy is explicable in terms of attracting such pollinators. The flowers also have many adaptations that ensure their being fertilized by pollen from a different plant. These include dioecy (male and female flowers on different plants) and dichogamy (sequential hermaphroditism, either protandry with the male flowers functioning first or protogyny with the female flowers functioning first). And then there is prepotency, which means that a flower is disposed to be fertilized by pollen from another plant and perhaps self-fertilizes only as a last resort. Plants that have switched to pollination by wind have flowers that are quite different from those which are pollinated by insects. In general then, comparative biology points in the same direction that the experiments do.

Strengthening the comparative treatment, Darwin devotes Chapter XI to the biology of the insects that serve as pollinators. This chapter might be read as if it were a separate essay by those who are not inclined to read the whole book. A particularly interesting topic from an evolutionary point of view is the “flower constancy” of bees. When a bee starts foraging she tends to continue visiting flowers of the same species. This habit benefits the plants, for pollen from another species would be of no use to them. Yet Darwin emphasizes the point that this benefit to the plants is not the reason for the bees having flower constancy. Darwin explains the phenomenon in terms of the principle of the division of labor. Although not mentioning Adam Smith, who explained such matters in The Wealth of Nations, Darwin suggests that the bees, like humans, save time by not switching from one task to another. Another topic discussed in this chapter is the bees obtaining nectar by chewing holes in the flowers. The result is that the flowers are not pollinated, in spite of having presented the bees with a reward for their services.

Given what was later learned about genetics, we now understand why it is advantageous to plants and other organisms to avoid self-fertilization and other causes of inbreeding. Among other things, inbreeding leads to the expression of deleterious recessive genes. Darwin of course had no knowledge of genetics. Nonetheless he was able to come up with a close approximation by observing the effects of cross and self-fertilization. One of his major conclusions is that self-fertilization is advantageous insofar as it maximizes the number of offspring produced. Another is that cross-fertilization is advantageous because it brings together parents that have become different as a result of having lived under different conditions or varied spontaneously. And finally, “the injury from self-fertilisation follows from the want of such differentiation in the sexual elements.” Darwin’s thinking was affected by his belief in the direct action of the environment in producing evolutionary change. He thought that breeders of domesticated animals and plants could obtain the benefits of outbreeding by keeping their stock in different localities. His remarks on the effects of inbreeding in human beings are particularly interesting, given that he and his wife were first cousins. He thought that people having different habits of life would tend to offset the effects of mar-
Darwin had used the analogy between arti-
lished in February. A second edition, substantially
Domestication was first published on January 30,
1868. A second printing, with some changes was pub-

As a parting shot, Darwin discusses fertility and sterility in relation to species concepts. He maintains that there is no essential difference between species and varieties. Crossing two organisms and finding that they produce no offspring or ones that are sterile had been used as evidence that they are of different species. But Darwin was very critical of that criterion. His work on dimorphic and trimorphic plants showed that the same kind of block to reproduction occurs within species. And whether a cross between two species or morphs is fertile may depend upon which species or morph produces the pollen. In modern biology reproductive barriers are understood to keep species separate. But it is not a simple matter of whether various organisms can or cannot cross. Rather, the species are reproductively isolated. So Darwin’s insights here remain valuable, even though the modern view is that species differ qualitatively, not just quantitatively, from varieties.

Variation of Animals and Plants Under Domestication

The *Variation of Animals and Plants under Domestication* was first published on January 30, 1868. A second printing, with some changes was published in February. A second edition, substantially revised in some places, appeared in 1875. In the *Origin* Darwin had used the analogy between artificial selection and natural selection to lend plausibility to his theory and to make it easier to understand. This theme is still present in the *Variation* and Darwin develops it in considerable detail. Likewise, variability is a necessary condition for selection, whether artificial or natural, to effect change. In his introduction Darwin states that he intended to produce a book on variability in a state of nature. That plan never materialized. The *Variation* was partly made up of chapters that Darwin had written of his long book entitled *Natural Selection* that was in progress when Wallace’s more or less independent discovery forced a change in plans. At the time when the introduction to the first edition of the *Variation* was written, Darwin had not yet abandoned his plan to write a series of books expanding upon the *Origin*. In the introduction to the second edition, Darwin says he still hopes to write a book on variation in nature, but he quietly dropped the plan for later volumes in the series. This analysis is based on the first edition but in passing discusses some interesting changes that were made in the second. Which edition one chooses will probably make little difference for most readers. The book is over nine hundred pages long, and often quite tedious.

Darwin’s interest in variation was much deeper than the need to document its existence. Rather, he sought to understand variation as a process, to explain its mechanisms, and to get at its underlying causes. These causes were basically embryological ones and his approach owed a great deal to the work of Étienne Geoffroy Saint-Hilaire and his son Isidore Geoffroy Saint-Hilaire on developmental abnormalities (teratology). The idea was that normal and abnormal development are variations on the same theme and obey the same laws. A survey of the diversity that had arisen through selection of animals and plants would show how structure has been modified by changes in the underlying developmental processes. It also offered to reveal what causes such changes to occur in the first place and cast some light on such topics as inheritance. Although Darwin’s efforts to come up with a mechanism for inheritance were not very successful, he did remarkably well at dealing with later stages in the chain of causality. To the extent that we can compare Darwin’s work with modern genetics, we can say that he made a splendid contribution to developmental genetics but was largely stumped by transmission genetics. At the end of the book Darwin proposes a theory called “pangenesis” that accounts, among other things, for the inheritance of acquired characters. Because that phenomenon turns out not to exist and the theory that he proposed turned out to be far from the mark, the book has largely been neglected and often its merits have been overlooked.

The introduction provides a brief summary of Darwin’s main ideas about evolution, including his philosophical position with respect to scientific method. Most of the first volume consists of a survey of selected groups of domesticated animals and plants. It is full of Darwin’s original observations and material supplied by his many informants as well as citations of the scholarly and popular literature. From
the fact that he passes systematically from one group of organisms to another, one might get the impression that Darwin is simply cataloguing observations that relate to his theory. A careful reading, however, shows that he introduces new topics as he proceeds from one group to another. Some groups are more appropriate than others for addressing a particular problem and Darwin structures his exposition accordingly.

Chapter I deals with domestic dogs and cats. Dogs are the first animals to have been domesticated and they have a wide variety of breeds. They therefore provide excellent materials for discussing such problems as whether the various breeds have been separately derived from different wild ancestry. He notes that, like many other domesticated breeds, the “turnspit” dog owes its characteristic short legs to a kind of mutation, or monstrosity, which is widespread among domesticated animals and even occurs in man. And he finds much evidence that selective breeding has brought about significant changes. Cats have long existed as domesticated animals, but they tend to breed freely unless kept in strict confinement and there are as one would expect fewer breeds of them locally and they have been less modified. Horses and asses, treated in Chapter II, have also long been domesticated and they have been subjected to intensive artificial selection. They provide excellent examples of breeds having been selected for a variety of purposes. Darwin uses them to illustrate some of his notions about variation including the idea that striped horses are atavisms, or cases of reversion to an ancestral condition.

Chapter III passes on to the Artiodactyla and deals with pigs, cattle, sheep and goats. Darwin concludes that pigs, like dogs, have descended from several non-domesticated forebears. He discusses the remarkable ways in which the skeleton has been modified and relates those changes to embryology via teratology under the rubric of “semi-monstrous breeds.” Cattle are highly diverse. In this section Darwin discusses the niata cattle, which he compares to bull dogs and pugs. He had seen these semi-monstrous animals in South America and discussed them in his Journal. The difficulty they have feeding explains what keeps wild animals from having such anatomy. Sheep, he thinks, provide good examples of what he calls the direct influence of the environment, especially in response to hot climates. He argues however that intense selection counteracts such changes. He relates how short-legged breeds had been formed by breeding from mutant individuals. Goats he uses as examples of a group with a remarkable variety of domesticated breeds.

Chapter IV is on rabbits, another group that has long existed in domestication and has produced a large number of breeds. Darwin did much original research on these animals, in addition to gathering material from breeders and other informants. He studied them alive and he also examined specimens and made anatomical preparations of their skeletons. He found that the proportions of the various parts of the body have changed under domestication. He attributes such changes as reduced size of the brain to disuse of the organs. This is one of the “Lamarckian” mechanisms that he believed in, and he invokes it here even though relaxed selection pressure would also have explained the facts.

Darwin devotes two entire chapters—V and VI—to pigeons. These 93 pages provide much more detail than do the eight and one-half in the Origin. In that work he emphasizes the point that although the various breeds are all descended from the rock-pigeon, breeders were convinced that they came from separate species of wild ones. In the Variation he explains that he chose pigeons as study animals partly because the evidence for the monophyletic origin of the group is clear and unequivocal, partly because the literature allows one to trace the history of the various breeds, and finally because the group is highly variable. Darwin begins by describing the various groups, using a diagram that crudely approximates a phylogenetic tree but also attempts to show how much the various races, subraces and breeds have been modified. He repeatedly makes the point that had these birds been taken from the wild, they would be ranked much higher: as distinct species and genera. He then proceeds to discuss variability within the breeds, something that argues for the possibility of continued modification by selection. Supporting that view is that the characters most valued by breeders are highly variable. The extreme variants seem also to be male individuals.

As with rabbits, Darwin devotes considerable attention to the characteristics of the skeleton. Because the differences in the skeletons are of no interest per se to the breeder, who selects only on the basis of external appearances, one should expect little divergence, but it nonetheless occurs. Darwin takes this opportunity to discuss his principle of the correlation of growth, a phenomenon that would be called a kind of pleiotropy by modern geneticists. The point is that variations are causally linked, so that when one
selects for one character others increase in frequency as well. He gives many examples. Then he discusses the effects of disuse, explaining the reduction in size of various parts. Again he might have tried to explain this in terms of natural selection, but fails to do so.

Chapter VI attempts to reconstruct the evolutionary history of domesticated pigeons. Darwin argues that the rock-pigeon is the only known candidate having the properties such as sociability that would make it a plausible ancestor. Then he gives six different arguments against the alternative hypothesis that the different races might each be descended from different stocks. Next he discusses what was known about pigeons from the historical record, going back to the ancient Egyptians. And finally he speculates how the breeds might have evolved through a combination of artificial selection and other mechanisms. His scenario invokes change in the conditions of life inducing greater variability, a mechanism that he discusses later in the book. His main mechanism, however, is artificial selection, and he explains how this would have worked.

Chapter VII is on fowls. Again, Darwin includes a large amount of his own observations, experiments and measurements on the animals in this chapter. He also drew heavily upon the expertise of informants. Fowls were good materials for various topics that interested him. They had been bred as game-cocks and the results were of interest in relation to changes in the time of life at which various characters appear and how they relate to the properties of the two sexes. Darwin’s discussion on how the game-cock chicks fight at an early age provides an example of how selection can have deleterious consequences. It is also a very insightful exercise in developmental behavioral genetics. And the various breeds show different patterns in the expression of sexually dimorphic characters. Darwin recounts how he studied the skeletons and skulls of many breeds of fowl, following up his discussion on the birds’ external characters. The breeders would have selected for external characters and the internal ones would be modified as a result of correlated effects on development. Chapter VIII completes the survey of the animals: miscellaneous birds, gold-fish, hive-bees and silk-moths.

Chapter IX through XI are on plants, which have a very different anatomy than animals, so different structures have been subjected to selection. Naturally the parts used for food are shown to be the most variable and the most modified. Darwin takes the opportunity to rebut the notion that important organs are not variable. As he says in the Origin, those who make that claim argue in a vicious circle—they decide which organs are important for classification by screening out the ones that vary. In the same vein he notes that some of the flowers characteristic of varieties would have led botanists to rank them as genera or even orders. He notes that flowers have been selected mainly for their beauty, something that has little scientific interest. What is interesting is that monstrous forms of the flowers have been selected, ones in which the stamens are converted into petals and so-forth. Again, modification in structure has resulted from developmental changes. Chapter XI is mainly on bud variation, or changes that appear in the somatic tissues of the plant rather than the germ. Darwin also considers how grafting might produce a kind of hybridization and how the pollen supposedly affects the somatic tissues of female plants. These phenomena were of considerable theoretical interest to him, but they led him astray because they seemed to indicate that external influences produce variation.

Passing now to Volume II, Chapters XII to XIV are about inheritance. The study of domesticated organisms provided Darwin with valuable materials on this topic for many reasons, not the least of which was that breeders often kept extensive pedigrees. Inheritance or heredity posed serious problems for Darwin, and it was not just because so little was known about it. Indeed, many of the challenges he faced resulted from outright misconceptions about heredity rather than just ignorance. Much of what we now know to be error was widely accepted as fact, with a substantial amount of what looked like perfectly good scientific evidence in its favor. The “Lamarckian” notions of use and disuse, the inheritance of acquired characteristics, and the direct action of the environment were generally taken for granted by scientists and lay persons alike, and Darwin was no exception. Darwin was among the skeptics with respect to particular cases, but it was only toward the end of Darwin’s lifetime that August Weismann began to challenge such notions. Darwin wrote a preface to an English translation of one of Weismann’s early books. Darwin thought of heredity as a conservative influence—something that keeps populations from changing unless something forces them to change. That implied that the breed or species would inevitably tend to return to the ancestral state. We now know that in the absence of selection, mutations will accumulate, making evolution, in this case a kind of degeneration, inevitable.
Another conceptual problem for Darwin was the notion of blending inheritance. If one takes a bucket of white paint and mixes it with a bucket of red paint, one gets two buckets of pink paint. Something similar seems to occur when different organisms are crossed. The result of crossing plants with white flowers with plants with red flowers may be plants with pink flowers. The offspring display a blend of the parents’ characteristics. Everybody who knows some elementary genetics can analyze such a cross and suggest that a pair of homozygotic parents produced heterozygotic offspring with less red pigment. But Darwin did not know about such goings on, and that was the problem he had to deal with. What he needed was a particulate theory of inheritance and a clear distinction between genotype and phenotype. Under blending inheritance, any new variant that is selected will get washed out by crosses with the original type. This point was drawn to Darwin’s attention by a Scottish engineer, Fleeming Jenkin, and Darwin responded by making important changes in later editions of the *Origin*. Darwin suggested various ways in which the number of variant individuals might be increased, thereby offsetting the tendency to revert to the original state. But he also realized that not all characters blend. In the early chapters of the *Variation* he makes this point and tries to come up with a more sophisticated treatment of inheritance. Given the complexity of the subject it is remarkable how well he did.

In Chapter XII Darwin introduces the problems of inheritance, relying heavily upon the experience of breeders and medical men. The evidence consisted largely of pedigree data and efforts to modify domesticated animals and plants. He considers the possibility that amputation of a part in a parent might be passed on to the offspring. Although he notes that such amputations have been done for many generations without clear effect, he gives anecdotal evidence that accidental injury sometimes seems to produce similar changes in the offspring. Darwin believed that changes in the environment have a direct effect on the properties of the organism, changing them in an adaptive direction in some cases and in others causing them to vary. The whole of Chapter XIII is devoted to reversions or atavisms. He had already mentioned that children often resemble their grandparents or even more remote ancestors. Darwin again was in no position to discuss this topic in terms of recessive genes going unexpressed, but he did have some idea of the traits being unexpressed, or as he put it “latent.” In the case of sex-limited inheritance, he had a straight forward example of such latency. A son might inherit traits that are only present in males from his grandfather via his mother. He suggests situations in which such atavisms might be produced. In the first situation a character somehow gets effaced through variation and then reappears. He gives examples of domesticated organisms in which the ancestral part reappears, sometimes in vestigial condition, at very low frequencies. In a second, he suggests that crossing two different, modified breeds might lead to the sudden reappearance of the ancestral trait. He backs up his notion of characters remaining latent by experimental evidence showing that secondary sexual characters can appear in the opposite sex. And finally he observes how monstrosities, viewed as developmental abnormalities, can often be treated as atavisms. Chapter XIV deals with prepotency, sex-limited inheritance and developmental timing. Prepotency means a relatively strong tendency to affect the character of later generations. As a property of traits, it might reasonably be compared to dominance. However, Darwin also treated it as a property of entire organisms. He noted that when individuals of two different breeds or species are crossed, the offspring may tend to resemble one parent much more than the other. The notion of prepotency relates to that of sex-linked and sex-limited inheritance. Parents may transmit characters only to offspring of their own sex or only to those of the opposite sex. Enough was known about color blindness and haemophilia at the time to recognize such patterns, but not enough to understand what was going on at a cellular or molecular level. Variation occurs at a particular time in the life cycle of the organism, and is the result of a change in developmental processes. The time at which such a change occurs is generally the same in the offspring as it is in the parent. Referring back to the *Origin*, Darwin reiterates the point that variation that occurs later in life has no effect on earlier stages of development. Having used that principle to explain why the younger developmental stages of distantly related organisms are more similar to each other than are the adults, he now applies it to various characteristics of domesticated organisms, and to human inherited diseases.

The next five chapters, XV through XIX, deal with crossing. One might conjecture that crossing between two different groups of organisms would tend to produce a kind of mixture. Given what we know about chromosomes the notion of a “mixture” is not very appropriate, for the hereditary material is
highly organized, in a way that limits the kind of crosses that give rise to viable and fertile offspring. Darwin could only study the effects of crossing between more and less closely related animals and plants and speculate as to what goes on physiologically. Nonetheless he realized that if two breeds of domesticated animals or plants are allowed freely to cross, the result will tend to obliterate the differences between them. So breeders had to keep them segregated. Darwin expands somewhat on what he said in the Origin about all organisms, including hermaphrodites, at least occasionally crossing. That implies that whatever its role may be, crossing must be important. He notes that some characters do not blend. In Chapter XVI Darwin considers what tends to prevent free intercrossing among domesticated breeds or “varieties” as he often calls them. They tend, he says, to cross or mate within their own breed. On the other hand domestication tends to reduce the sterility that is characteristic of species, and it may also lead to increased fertility.

Chapter XVII makes the point that outbreeding (crossing) is beneficial, whereas inbreeding has deleterious effects. He provides clear evidence for both of these phenomena. Darwin interpolates a brief discussion on the possible effects of inbreeding in man. He says that he is “unwilling to enter on this subject, as it is surrounded by natural prejudices.” He does not mention that he was married to his first cousin and was much concerned about the possible consequences for his own children. But he does consider the literature and discusses the possibility of instinctive avoidance of inbreeding. Chapters XVIII and XIX explain why crossing with unrelated organisms is not necessarily beneficial. Darwin reasoned that organisms would be modified by any change in the conditions of existence. In some cases that produces sterility. On the other hand it causes divergence. The sterility of hybrids results from differences in the reproductive system. Incipient species living under different conditions would tend to diverge in their reproductive systems and gradually become incapable of producing offspring. Darwin reasoned that this divergence was not the result of selection for sterility per se, for sterility would not be advantageous to its possessor. Rather, he thought, the sterility arises as an incidental byproduct of some other change. Such a result of selection for some other trait would be what we now call pleiotropy and Darwin called correlated variability. However, Darwin also included the direct action of the environment, the effects of which, as we now see it, would not be inherited.

Chapters XX and XXI are on selection, the former being on artificial selection, the latter on natural selection among domesticated organisms. Chapter XX, therefore, is concerned with how human beings function as selective agents. Darwin subdivides artificial selection into methodical on the one hand and unconscious on the other. Methodical selection is purposeful: the breeder intends to get a particular result. Unconscious selection has nothing to do with the notion of an unconscious mind, but simply means unintentional. Methodical selection is a specialized technology and is very effective in producing improved breeds of animals or ones that appeal to the tastes of pigeon-fanciers and dog-lovers. Although associated with the industrial revolution, such practice goes back to antiquity. Unconscious selection goes back even earlier and is practiced by primitives. In either case, Darwin argues, the parts that are “most valued by man” are the ones that have changed the most. This is evidence that man has in fact been the selective agent. At the end of this chapter he rebuts a notion that has long been popular with anti-evolutionists — that it is hard to imagine how complex changes involving the body as a coordinated whole could have come about. Darwin responds that change has been slow and gradual. He gives examples from domesticated animals showing how that actually has happened. Chapter XXI then turns to natural selection as it affects domesticated animals and plants. One of the main points is that artificial selection is often opposed by natural selection, sometimes frustrating the efforts of the breeder. Darwin closes with a philosophical discussion on the different roles of variation on the one hand and selection on the other. He compares variation to what happens when pieces of rock break off from a precipice, and selection to a builder choosing among such pieces and creating a building made up of them. As he sees it, variation is strictly a law-like process. But what really counts is selection, the analogue of what the builder does. This analogy is invoked again at the end of the book.

Chapters XXII and XXIII deal with the causes and kinds of variability. Darwin’s basic position is that groups of organisms become variable when they are exposed to new conditions of life. The mechanisms of such modification remained a mystery to him. Something was acting upon the organisms, and he thought that it could be on the gametes, the embryos, the young or the adults. We now know this to be true, but given an inability to distinguish effects
upon the germ from effects upon the soma (or genotype from phenotype) crucial pieces of the puzzle were missing and remained so until the rise of modern genetics. Chapter XXIII considers what Darwin calls the “direct and definite” effects of external conditions. He alludes to the notions of Étienne Geoffroy Saint-Hilaire and his followers about direct action of the environment producing hereditary changes (Geoffroyism), which are often confused with those of Lamarck. Here the idea is that mere variation, without selection, would suffice to produce a new breed or species. Geoffroyism, like the mutationism that flourished early in the twentieth century, ascribed evolutionary change to what Darwin called the primary causes of structure. Darwin freely admits that changes in a particular direction may be evoked by change in the environment. However, he concludes that for the most part the organisms simply become more variable.

The next three chapters, XXIV through XXVI, are about the laws of variation. Darwin believed that everything that ever happens in the universe occurs in strict conformity with the laws of nature. Therefore it would be grossly misleading to say that he attributed evolution to chance, or that the variations that are necessary for selection to take place cannot be explained in terms of laws like those of physics and chemistry. Those laws predict which variations will occur, but they do not tell us what the evolutionary outcome will be, for that depends upon historically contingent conditions such as the selection pressures that happen to be active in the environment in which the organisms occur. The process of selection also has its own laws of nature, and these too must be supplied if the history of life is to be properly explained. Many people have maintained that the “real” explanation for evolution is laws of nature and that those laws of nature are laws of embryological development. However, the laws in question do not predict evolution, but only set certain limits to what changes are possible. Such efforts to replace natural selection with embryology have failed. Ironically, Darwin showed remarkably well how such laws and constraints can be accommodated within his theory. Darwin conceived of evolution as a process in which there is a succession of modified ontogenies or “comings-into-being” of organisms.

Chapter XXIV begins with a discussion of the _nisus formativus_. This was an old-fashioned, vitalistic notion that supposedly explained how regeneration occurs. Darwin restricts it to mean that the developing organism is organized into a coordinated whole. He then considers the evolutionary effects of use and disuse of parts and the acclimatization of domesticated animals and plants to new environments. Developmental abnormalities were often attributed to the arrest of development: a part fails to go beyond the early stages of development. The same kind of change would explain the occurrence of “rudimentary” structures such as the remnant of a tail in human beings. Parts that no longer function would get reduced in size. Darwin does not provide a clear answer to the question of to what extent such reduction is the result of use and disuse on the one hand and natural selection on the other. Chapter XXV continues the search for laws of variation by expanding upon Darwin’s ideas about correlated growth and correlated variability. A change in one part of the body is often accompanied by a change in another part. Darwin shows how some of these correlations have a causal basis in the mechanisms of development and in physiological interdependency. His experience with pigeons was a great help here. The increase in number of tail-feathers in one breed led to a tail with larger and more numerous vertebrae. Chapter XXVI adds further patterns of variation that make sense in terms of embryology as then understood. These include what Darwin calls “analogous variation,” in which the same kind of variation occurs in separate species or breeds. He thought that some kind of developmental potential gets realized independently in distinct populations.

Chapter XXVII presents Darwin’s “provisional hypothesis of pangenesis.” The word “provisional” may seem superfluous, for all scientific hypotheses are supposed to be open to future refutation and modification. It serves, however, to underscore its speculative and character, which Darwin freely admitted. The Greek roots of “pangenesis” indicate that the entire organism generates, or gives rise to, the next generation. Although pangenesis had much to do with heredity, Darwin himself considered it a theory of generation. This older term included embryological development and regeneration as well as inheritance.

In the second edition Darwin added a long footnote in which he points out that the hypothesis had been widely criticized, though it had found a few supporters. The critics whom he takes seriously are Federico Delpino and G. H. Lewes, both of whose criticisms he considers both fair and useful, and Francis Galton, who had performed some experiments with negative results. Some of the others, such as Mivart, Bastian
and Wigand were quite hostile, but it was not just pangenesis to which they were opposed. Part I of this chapter summarizes the phenomena that the hypothesis was designed to explain. These include: budding, regeneration, metamorphosis, graft hybridization, inherited effects of use and disuse, variability, reversion and latency.

Part II explains the hypothesis. The cells of the body give rise to minute particles, called gemmules, which circulate throughout the body, multiply and ultimately may develop into cells like those from which they derive. They may, however, be transmitted in the latent state and develop into cells in some later generation. They may combine with other gemmules and with partially developed cells. And they have an “affinity” for one another such that they aggregate into buds or into the gonads. In a footnote, Darwin notes some of his predecessors, whose views were, however, not entirely like his own. These include Buffon, Bonnet, and Richard Owen. One other writer, Herbert Spencer, in his Principles of Biology, had suggested something vaguely similar, and Darwin quotes it at length. After it was published Spencer wrote Darwin a letter, explaining that in his own theory the “physiological units” within a single organism are homogeneous (all alike), whereas Darwin’s gemmules are heterogeneous. In the second edition Darwin revises the footnote. Owen had claimed that Darwin’s hypothesis was no different from his own. In the light of the documents and from the perspective of what we know in the 21st century Owen’s reaction can be viewed with much irony. In the first place, his theory was very different from Darwin’s, which we now know not to be correct. In the second place, Owen’s theory was rather like Weismann’s, which ultimately prevailed!

The gemmules, Darwin explains, are diffused throughout the body, and therefore they can come together and produce a whole organism in a bud, replace a limb that has been lost, or regenerate the missing portion of an animal that has been cut in half. The gemmules have an “elective affinity” for certain kinds of cells and that helps to explain how they control development. The term “elective affinity” was an old-fashioned chemical term. Darwin even explains what we now call heterotopic development, such as an arthropod’s antenna developing where one would expect to find an eye. To us moderns this looks very much like what is now called evo-devo, but with a different mechanism. The capacity of the gemmules to remain latent explains the reappearance of ancestral traits, and their transmission from a parent to an offspring of the opposite sex. The problem of blending inheritance is eliminated because the gemmules do not blend. Darwin had come up with a particulate theory of inheritance, and one that explained much more than just the inheritance of acquired characters.

Chapter XXVIII provides a general overview of variation as discussed in the earlier parts of the book. It ends with a philosophical discussion aimed at those who would maintain that variation, rather than selection, is the real cause of evolution. Referring back to Chapter XXI, he reiterates his analogy of blocks of stone falling from a precipice. Strictly speaking, he says, the shape of the blocks is not accidental, for everything occurs according to laws of nature. An architect might create a building by selecting stones from the bottom of the precipice and fitting them together. One would not, however, say that the properties of the building are not explained unless one can explain the shape of the stones of which it was built. Having exposed the fallacy of what has been called “structuralism” Darwin discusses Asa Gray’s notion of what John Dewey called “design on the installment plan.” God, so to speak, has ordained the pattern of variation and thereby affected the overall pattern of evolution. But God would have ordained all sorts of other things, like the variations that have produced grotesque ornamental poultry. Darwin’s is a reductio ad absurdum argument.

ON THE DESCENT OF MAN

The Descent of Man, and Selection in Relation to Sex first appeared in 1871. A second edition, somewhat revised, was published in 1874. It is not easy to decide which edition to recommend to the reader. The first edition is the one that had the greatest impact on contemporary readers, but the second edition includes some replies to critics. Here we follow the first edition. In the *Origin* Darwin only alluded to human evolution in a single sentence. That sufficed, and human origins were a major consideration in the controversies that immediately followed. By the time that the *Descent* was published, the scientific community as a whole no longer seriously contested the fact of evolution, though the mechanisms were still controversial and long remained so. In the *Descent* Darwin treats human evolution from the point of view of both genealogy and mechanisms. He documents the relationships of our species to other animals, emphasizing the transitions, especially in those features that might be considered uniquely human. He also provides an
expanded treatment of his ideas about evolutionary mechanisms, especially sexual selection. Another important theme is the relationship between evolution and ethics.

In the first chapter Darwin briefly reviews the anatomical features that indicate our descent from other primates. The detailed agreement in structure is straightforward comparative anatomy, and Darwin adds some physiological features as well. He also compares the manner of embryological development, showing the sort of common features that indicate common origin. His discussion of rudimentary organs is particularly detailed, showing many features that are evidently useless in human beings but are fully functional in other animals. Evolution provides a straightforward explanation for these parts.

Darwin then extends the comparison to mental powers. He argues that the mental differences between human beings and other animals are, albeit real, not fundamental ones. Darwin obviously overestimated the differences between primitive and civilized persons. Likewise he tended to overestimate the intellectual prowess of other animals. On the other hand he provides much evidence that they have emotions and feelings, much like our own, and that they possess a capacity for reasoning as well. He discusses the use of tools and the beginnings of communication. The presence of articulate speech in human beings then as now was taken by many persons to indicate some kind of unbridgeable gap between our species and other ones, but Darwin counters that such a transition is not impossible. He turns up the heat, going on to trace the origin of religion to precursors in other species.

Darwin then breaks even more radically with tradition by treating morality from a strictly naturalistic point of view. He was familiar with the ethical writings of philosophers, including the economist Adam Smith, on such topics as the conscience and the moral sense. Darwin treated human morality as a more refined development of phenomena that could be observed in other social animals. But it was a major challenge to his ingenuity to show how such behavior could evolve through natural selection, which, on the face of it at least, seems to depend upon self-interest of the most unenlightened sort. Darwin’s solutions to such problems include essentially all of those that have been proposed by subsequent authors. These include reciprocity and concern for the welfare of relatives. He points out that the social virtues originally had only to do with relationships within the group. Their refinement and extension would come later.

In the next two chapters Darwin works out the details of how this might have taken place. In the second edition he changes the order, so that the physical and the moral are treated together. Chapter IV (II in the second edition) applies the theory of natural selection to the human species, beginning with a discussion on how extremely variable it is. He considers the possibility of direct action and then of use and disuse, and provides examples of developmental abnormalities, atavisms and correlated variability. All of these are intended to show that we fit the general pattern of variability seen in other animals. Then to demonstrate that we are liable to natural selection, he discusses our reproductive rates. And then he considers how natural selection could have affected our ancestors. He presents an adaptive scenario involving upright posture, increased brain size, and increased sociality.

Chapter V (III in the second edition) develops his ideas about intellectual and moral evolution. His basic model is the differential survival of family groups and tribes. In the modern literature this form of selection is often called “group selection.” He also briefly mentions what is called “kin-selection” analogizing it with breeding from the same stock of domesticated animals and plants. He maintains that ordinary natural selection would tend to eliminate those who sacrifice themselves for the benefit of others. Lastly, he discusses the conditions of progress and the question of whether we should expect our species to advance or to degenerate. The section is long and complicated, and full of unanswered questions.

Chapter VI attempts to locate the human species in the genealogical tree and to give an idea of the series of changes that our ancestors have undergone, working downward to the origin of the vertebrates. He begins by criticizing the habit of treating us as belonging to a distinct order, class, or even phylum on the grounds that we are very different from our relatives. This approach to ranking came under heavy fire late in the twentieth century as genealogical (phylogenetic) classification became more popular. One of Darwin’s main antagonists was Richard Owen, who had a famous argument with Thomas Henry Huxley over man’s place in nature. Darwin argues that we ought to be placed with our closest relatives, and makes it clear what that means. He tries to determine where our species originated. Then he traces our lineage farther back, ultimately to the tunicates. He suggests that our early ancestors were, like tunicates, hermaphroditic.
Chapter VII deals with human races. Darwin rejects the notion that humanity consists of more than one species in spite of great geographical diversity. He rules out quite a number of causes of their diversification. These even include natural selection, for he could see no obvious advantage to the differences. He then suggests that sexual selection may be the explanation. The second edition has a note by Huxley on the structure of the brain in this chapter.

The second, and much larger, part of the book is on sexual selection. This part is subdivided in the second edition so as to make a third, dealing with sexual selection in man. The topic of sexual selection is difficult enough, and Darwin’s writing sufficiently obscure, that we should reiterate what has been said about the three modes of selection: natural, artificial, and sexual. All three depend upon differential reproduction among organisms within the same population. In natural selection reproductive success results from being better able to cope with the conditions of existence. In artificial selection what counts is the choice, whether deliberate or not, by a breeder to have one organism rather than another procreate. Sexual selection is like artificial selection, in that an organism’s reproduction is controlled by an organism. It is a matter of pure reproductive competition and does not lead to an increased reproductive potential of the species. In that sense its results are non-adaptive. The mechanism of sexual selection was not invented in order to explain away difficulties in the theory of natural selection, but to provide a compelling argument in favor of selection theory in general.

Darwin devotes a chapter (VIII) to how sexual selection works. He distinguishes between primary and secondary sex characters, the latter of which are not “directly” concerned with reproduction. He points out that this definition leaves it open how direct the connection is. Should they include the organs that subserve copulation and egg-laying? If we exclude these, then only the ovaries and testes remain. So he includes them, and some others, such as mammary glands and brood pouches. By secondary sexual characters he means those that are involved in such activities as attracting mates and defeating rivals. A third class of sex characters, for which he does not provide a name, are those that have no direct connection with reproduction as such, but are the result of males and females living in different places or eating different food. In effect, though he is not particularly clear about it, Darwin means by a secondary sex character one that is produced by sexual selection. All other differences between males and females are the products of natural selection.

Sexual selection, he explains, is a matter of reproductive competition pure and simple, and does not result from being better fitted to survive in the struggle for existence. But he goes on to say that it may be difficult to distinguish between the effects of natural selection and sexual selection. Later he explains how they interact. He says that when game-cocks are selected they become improved and that the same occurs in nature. And he points out that an animal may select a mate that is more healthy or vigorous, suggesting a kind of natural eugenics, though this was not as important a consideration with him as it became a century later. Be this as it may, it would be natural, not sexual selection. A skewed sex ratio or polygamy ought to further sexual selection, but Darwin shows that that is by no means necessary. He then considers the behavioral differences that are responsible, in particular the greater eagerness of males to mate. He notes that the adaptations that are used in sexual combat or in attracting mates may be deleterious to their possessors, but concludes that the advantages outweigh the disadvantages. There follows a discussion on what would now be called the developmental genetics of secondary sex characters: such topics as sex-limited inheritance. At the end of this chapter, there is an appendix on the proportion of males to females. Darwin deserves credit for having realized that the sex-ratio is an important problem. Why should the number of males be approximately equal to the number of females, and how could selection account for that? The solution that we now accept was proposed by R. A. Fisher early in the twentieth century. Basically, the answer is that we derive just as much of our ancestry from females as we do from males.

Darwin then develops and tests his theory by going through the animal kingdom, one taxonomic group after another, showing how an enormous mass of factual information can be explained in terms of his hypothesis. If sexual selection is to occur, certain conditions have to be met. For example, if it is the result of females choosing between males with different color patterns, the females must have the ability to see the males. When sexual selection does occur, it is accompanied by anatomical and behavioral features that make it possible. Darwin also had to consider a variety of alternative hypotheses, including Wallace’s notion that sexual dimorphism in color results from the female needing more protection than the male.
does. In surveying the “lower” animals Darwin argues that brilliant coloration is probably not involved in courtship. When he gets to arthropods, however, he finds copious evidence of sexual competition among male crustaceans. In Chapters X and XI, he discusses the insects, animals in which competition among the males had been well documented. He had good material on their courtship and on the sexual combat of the males. He recognizes causes of brilliant coloration other than sexual selection, and takes these into account. Among these are mimicry and warning coloration, and Darwin discusses both of these phenomena toward the end of Chapter XI.

Chapter XII deals with fishes, amphibians and reptiles, i.e., all vertebrates other than birds and mammals. Combat between the males in some fishes had been studied, and Darwin provides examples of the behavior and the anatomical modifications that go with it. In amphibians and reptiles he finds indications of sexual combat between the males. Darwin devotes four whole chapters to secondary sexual characters of birds. This emphasis on birds can in part be explained by the amount of attention that had been paid to them by naturalists. But the reason Darwin gives is that secondary sexual characters are especially pronounced and diverse among birds. We might add that they provide good examples of both male combat and female choice and that they have both the physical and mental qualities that are conducive to sexual selection. Yet another reason is that Darwin was interested in rebutting Wallace’s efforts to explain sexual dimorphism in terms of natural, rather than sexual, selection.

Chapter XIII gives a general picture of sexual selection in birds. Darwin notes that some of the sexual dimorphism is not due to sexual selection but rather to males and females having different ways of life. He then discusses the combativeness of many male birds, and its correlates, such as larger body size. He provides a long discussion on their vocalizations and other sounds as well as miscellaneous behaviors that serve to attract the females, and also their “decoration” as he puts it. Chapter XIV treats such topics as courtship and the psychology of female choice. Sexual selection by female choice will work only if the females are attracted to the males by their ornaments and behavior, and only if the males do have different degrees of reproductive success. Darwin gives evidence that birds have something comparable to our own aesthetic tastes, and that the females prefer certain individual males. To reinforce his claim that selection could modify the sexual characters, he shows that they are highly variable. The chapter culminates in a discussion on how the patterns that resemble eyes (“ocelli”) on the tails of certain birds have evolved. Something like them occurs in butterflies as well, and Darwin shows how they have been modified from less striking patterns. They are also particularly well developed in peacocks and related birds, and a graded series of intermediate forms can be observed. In the Argus pheasant, they are particularly well elaborated and arranged in a way that precisely maximizes the visual effect when the male displays his plumage to the female.

Chapters XV and XVI deal with sex-limited inheritance in relation to the evolution of sexual dimorphism in color and ornamentation. The reasoning presupposes the ideas about the relationship between embryology and evolution that Darwin developed in The Variation of Animals and Plants under Domestication. He had only a limited understanding of the relevant physiology and genetics. He did not know that the sex of birds is determined by chromosomes, or how various kinds of genes affect color patterns or other characters, for science had not yet advanced that far. The expression of sexual characteristics is under the control of both male and female sex hormones, but the science of endocrinology as it existed at the time could tell him little more than what happens when the gonads are defective or get removed and whether they are active or not. However, the developmental patterns that interested him had been worked out in some detail. Darwin reasonably assumed that sexual coloration and ornaments had evolved as a consequence of their advantages to the adult birds. Because the juveniles do not mate, having those characters would be of no advantage to them. The variations that provide the basis for selection of those characters could occur in either the juveniles or in the adults and they could be present in just one sex or in both of them. Originally the juveniles and adults would have the same patterns, and selection would then superimpose adult male and female characteristics. Selection could change either sex or both, depending upon whether the variation that is favored by selection occurs in just one sex or in both. If restricted to one sex, the character would evolve in the sex in which it is selected. If not so restricted, selection on either sex would cause it to evolve in both.

Darwin enunciated a series of rules that relate avian color patterns to the sexes and state of maturity
of the animals. The juveniles would not have breeding plumage, because it is not functional, and the adults would have it expressed at the time when it is functional, and in the sex in which it is advantageous. If the variation is sex-limited, then the sexual characters should be present in the sex in which it is advantageous, and individuals of the opposite sex should retain the juvenile pattern. If not so limited, the variation should appear in both sexes, especially when the animals are in breeding condition. In that case the juveniles would most likely retain the primitive pattern. However, a variation that occurs quite early might affect the juveniles as well, and they might evolve a distinct plumage of their own. Darwin related this complex of patterns to the mating habits and other aspects of the reproductive biology of the animals. A good example is those birds in which the usual gender roles have been reversed. Where it is the males instead of the females who care for the young, the males are smaller, less ornamented, and less pugnacious than the females, and it is they whose plumage resembles that of the juveniles.

Chapters XVII and XVIII are on mammals, a group in which sexual selection by male combat is pronounced, and in which female choice is less important than it is in birds. Darwin establishes that males do fight, using their horns and other weapons. Although the horns of males are used in defense against predators, they are sometimes better adapted for combat with other males. The females generally lack such organs, he says, and when they have them they are less developed. Darwin gives evidence for the females preferring particular males. He also reviews the “ornaments” that occur in various male mammals, and occasionally in the females. There follow two chapters, XIX and XX, on the secondary sexual characters of man. Darwin makes it clear that the differences between male and female human beings are much like those that occur in non-human primates. The manner of development of these differences as well as the kinds of them (such as strength and bodily size) indicate that there is nothing extraordinary about us in this respect. Again, the secondary sexual characters, especially those of males, are highly variable. And the various “races” differ greatly in such features as hairiness. Darwin, as was noted earlier, thought that the traits that characterize various groups of human beings are not the sort of adaptive ones that are produced by natural selection. He invoked sexual selection as an alternative.

Darwin maintains that combat among male humans explains their greater bodily strength than that of the females, and their psychological differences as well. Darwin suggests that intellectual qualities selected in the males are also present in the females because they are transmitted to both male and female offspring. It would appear that Darwin underestimated the subtleties of feminine thinking. He suggests that women could be made more nearly the intellectual equals of men by a combination of education and the inheritance of acquired characters. To establish the plausibility of an aesthetic basis for sexual selection, Darwin gives evidence for musical appreciation in other animals as well as in primitive human beings and proceeds to discuss various forms of ornamentation. On the other hand, tastes vary, and different groups of people, both primitive and civilized, have quite diverse preferences. Selection would tend to accentuate those differences. Darwin concludes that sexual selection has been the most important. In the last chapter (XXI) he draws the general conclusion that sexual selection has been responsible for the acquisition of both our bodily and our mental powers, which in turn depend upon the development of the brain. The notion that the brain plays an active role in evolution is likewise fundamental to Darwin’s other works on evolutionary psychology.

ON THE EXPRESSIONS OF EMOTIONS IN MAN AND ANIMALS

The Expression of the Emotions in Man and Animals, first published in 1872, was originally planned as a single chapter in The Descent of Man. Darwin’s son Francis edited a posthumous second edition with some new material based upon Charles Darwin’s notes. In 1998 Paul Ekman brought out a third, or “definitive” edition with excellent commentary in addition to more material by Darwin himself. Here we will assume that the reader will use the first edition, which is the most widely available, mainly as reprints of the American edition.

Darwin’s work on human psychology, like that on other animals and on plants, began very early in his career. Indeed, some of the observations in the Expression evidently go back to the time when he was a student at Cambridge University. (He bet some other young men that they could not sneeze by taking snuff and they all had to pay up!) After he got back from the Beagle voyage he opened a series of notebooks on evolution, but soon split the series into two, one of which dealt with what he called “metaphysi-
cal” (largely psychological) topics. When his first son, William, was born Darwin began to keep detailed notes on the behavior of his children. Some of this material is incorporated in the Expression. In 1877 he published, in the journal Mind, an article entitled “A Biographical Sketch of an Infant” based on his observations of young William. It is one of the classics of developmental psychology.

It is hardly surprising that the greatest biologist who ever lived was also a psychologist of the first rank. The correlation is a causal one, for as Darwin put it in the Origin, “Psychology will be based on a new foundation, that of the necessary acquirement of each mental power and capacity by gradation.” The Expression illustrates how this program might be put into effect. In the introduction Darwin discusses the work of his predecessor Charles Bell. His own research was largely motivated by a desire to refute Bell’s notion that certain muscles in the human face had been created by God in order to express our emotions. However, Darwin intended to accomplish much more than that. He hoped that facial expression would provide a window through which we could view the mind. Darwin rejected traditional mind-body dualism and in this he may be contrasted with his friend Thomas Henry Huxley, who sided with Descartes. Darwin has been accused of thinking too anthropomorphically, and therefore interpreting the behavior of other animals as too much like our own. These charges are to some degree justified. However, his approach was an objective one, and he backed up his conclusions with comparative and experimental data. The reader should not be misled by Darwin’s language. His figure 6 (Fig. 2) is entitled “Cat in an affectionate frame of mind.” One behaviorist commentator suggested changing the caption to “Dermal stimulation.” That seems silly, though someone who takes a cynical view of cat behavior may suspect that what the creature really had in mind was getting fed.

People who think teleologically are apt to assume that the raison d’être of facial expressions is communication. This mistake continues to be made in spite of Darwin having refuted it along with teleology in general. In Darwin’s view, emotional expressions may indeed be used communicatively, but they did not originate as adaptations that further communication, any more than the nose exists because it supports spectacles. As Darwin showed in his other works, structures change their functions. He does seem to have carried this line of reasoning too far, however, for he does not provide any examples of natural selection causing an expression to convey a different emotion. The smile, we now know, formerly expressed fear; Darwin’s figure 17, shows a baboon “pleased by being caressed,” but that seems unlikely.

The Expression has been criticized as Darwin’s most “Lamarckian” work and it has seemed problematic why he did not more often invoke natural selection. This “Lamarckism” however is a matter of the inheritance of habits, not use and disuse or other evolutionary mechanisms that are ordinarily associated with Lamarckism. Darwin believed that natural selection is the main mechanism of evolution, but he also believed that several minor mechanisms are also effective. In this case he elevated minor ones to a more important role. Since he thought he could explain the facts one way or another, he may not have felt it necessary to decide which mechanism to invoke.

Darwin took great pains to show that facial expressions are inherited and are not mere customs. His views were ignored or rejected by anthropologists and others who tried to attribute every aspect of
behavior to culture. Things did not change until Paul Ekman, beginning with the assumption that Darwin was wrong, found out that his own field data showed that Darwin was right. The result has been a flourishing of experimental and comparative research on facial expression, much of it cross-cultural.

In the introduction Darwin discusses his predecessors and explains evolutionary rationale of his work. He also explains his methodology. One of the strengths of that methodology is that he uses a wide variety of evidence, including a questionnaire that he had printed off and distributed.

Chapters I through III explain the three general principles that Darwin invokes in explaining emotional expression. At the beginning of Chapter I he says that he arrived at these only at the close of his observations. Manuscripts suggest that this claim is not true. It resembles the claim that he makes at the beginning of the Origin about having patiently gathered facts and then finally allowed himself to speculate. The first of these is the principle of serviceable associated habits. When a certain state of the mind is produced there is a tendency to bring a particular group of muscles into play, producing a pattern which, though adaptive (serviceable) when taking action, is otherwise useless. When one thinks about doing something, even if one does not intend to do it, one may go through some of the motions. Such actions have been called “intention movements” but as Darwin notes they occur when nothing is actually intended, as when people are observing an athletic contest. Darwin’s theory has been compared to the associationism advocated by earlier psychologists and philosophers. He and Herbert Spencer have been categorized as “evolutionary associationists.” Chapter II deals with the principle of antithesis, which is more difficult to understand than that of associated habits. This is shown by two figures, reproduced here, of a dog that is hostile (Fig. 3A) and friendly (Fig. 3B). Darwin thought that emotional states occur as opposites. One pair of these opposites is expressed by the action of a set of muscles that produces a serviceable (again, adaptive) action on the part of the animal. The opposite emotion brings the same set of muscles into play, producing an action having the opposite form, but one which is not serviceable, except perhaps when the expression is used as a signal. Chapter III deals with the principle of the direct action of the nervous system. When we get excited or are afraid, we become aroused, and the nervous system causes our bodies to be made ready for action. Some of the effects are serviceable, but others, such as trembling, are not.

Chapter IV then discusses the mechanisms by means of which emotions are expressed, such as by producing sound or erecting the hairs or the feathers on the surface of the body. Chapter V treats a variety of “special expressions” such as those associated with anger and affection in domesticated animals and also in primates in captivity. His observations include some experiments made at the London zoo. There follow a series of chapters (VI through XIII) in which the “special expressions” found in human beings are treated systematically according to the emotions that these are thought to express. The term “emotion” is not quite appropriate for some of these. Shyness is generally considered a personality trait, but then again a shy person has characteristic emotions that do get expressed under certain circumstances. The various expressions are analyzed according to how the muscles, glands and other bodily parts are brought into play when a particular emotion is being expressed. A considerable amount of anatomical detail is presented along with both physiological and behavioral experiments. As may be seen especially in Chapter VI, Darwin studied children extensively. One reason for doing so was that they would be less apt to
have the spontaneous form modified by learning or the effects of observation. There are also observations made upon the insane, as in Chapter X and XII, part of the rationale being that such persons may become highly aroused and therefore show the expression to an extreme degree. He made cross-cultural comparisons, especially to be seen in Chapter XI, designed to separate the effects of custom and thereby establish that the expressions are inherited. These were partly based upon a questionnaire that he had printed up and sent to informants. Because the congenitally blind are at first unaware of being observed, Darwin utilized observations on them, many of which are discussed in Chapter XIII. Especially useful were observations made by his informants on Laura Bridgeman, who was both blind and deaf from a very early age. Chapter XIV provides a summary and some general conclusions about the derivation of emotional expressions from those of our remote ancestors.

ON PLANT PSYCHOLOGY

Insectivorous Plants was first published on July 2, 1875. It was the first of Darwin’s three books on plant psychology, the other two being *Climbing Plants* and *The Power of Movement in Plants*. Classifying these publications as psychology may offend some persons. After all, plants don’t have souls or minds, and that is what psychology is supposed to be about. But many years have passed since most psychologists defined their field that way. It is the science of behavior. Darwin’s work on plant behavior might also be viewed as ethology, and one might even say that he invented that field many years before its supposed founders, von Fritsch, Tinbergen and Lorenz. One objection to calling it ethology has been that plants do not behave, on the grounds that behavior is muscular movements. But this definition of ‘behavior’ seems a bit arbitrary, and not just because many animal movements are produced by cilia rather than muscles. Plant movements are based upon the action of a hydraulic system combined with differential growth. Plants do react to stimuli, and this fact created serious difficulties for the philosophers who wanted to deny a “sensitive soul” to them. Such semantic quibbles do not affect Darwin’s claims that plants share quite a number of faculties that seem characteristic of animals and, more importantly, that these faculties have gradually evolved by natural selection.

The book itself is rather long and tedious and few readers will want to read it from cover to cover. However, it does provide some fine examples of Darwin’s experimental work. Darwin tells us that his work on insectivorous plants began in July of 1860. That would have been during a vacation in Hartfield. He was surprised to observe the capture of large numbers of insects by the leaves of the common sun-dew, *Drosera rotundiflora*. That led him to investigate the physiology and adaptive significance of the phenomenon. Most of his experimental results are on that species, and about 60% of the book (Chapters I through XI) is devoted to it. The first chapter describes the structure of the plants and explains how they capture insects with their tentacles, which are very sensitive and secrete a sticky material. The second chapter shows that the plants respond much more readily to materials of animal origin than to mere mechanical stimulus. In the third chapter the results of observations of what goes on at a cellular level are described. A wide range of stimuli were tried and the plants were found to be very sensitive indeed. The fourth chapter is devoted to the effects of temperature on the reactions of the plants. In the fifth chapter the results of screening a wide range of substances are presented; it seems that the plants are responding preferentially to materials that contain nitrogen. This finding suggested that the plants might actually be able to digest their prey, something that had not been discovered in plants before. This hypothesis is supported by the experimental results presented in the sixth chapter. The plants digest their prey using an enzyme that functions only under acidic conditions, much like the gastric secretion of many animals. The seventh chapter documents the remarkable sensitivity of the plants to various salts of nitrogen. The results of screening a wide variety of compounds that might provide a clue to the mechanisms are presented in the eighth chapter. As in animals, the effect is not strictly correlated with the chemistry of the materials that were tested. The ninth chapter goes on to explore the effects of various other chemicals, especially those that affect animal nervous systems. These include various alkaloids, cobra venom, cyanide, alcohol and anaesthetics. In the tenth chapter the manner in which stimuli, which originate in the tentacles, are transmitted to the rest of the plant is explored. Darwin was looking for something like nerves, and for a while he thought he had found them in the vascular bundles in the leaves. But his experiments ruled that out.

The eleventh chapter provides a summary of the material on *Drosera latifolia*. It is followed by a brief
one on other species of the same genus. They all catch insects in much the same way. They live in habitats such as bogs where there is plenty of water but other nutrients are in short supply. And they all are adapted to obtaining nutrients not through their roots, but from the insects that they capture. Then Darwin expands the discussion to the rest of the family Droseraceae, which provide a broader range of variations on the same basic theme (in chapters XIII through XV). The thirteenth chapter is devoted to just one of these, the Venus’ fly-trap, Dionaea muscipula. It differs in having a much different, and more spectacular, way of capturing insects and in the details of how these are digested. But the trap is, like that of Drosera, a modified leaf. Aldrovanda vesiculosa, treated in the fourteenth chapter, is treated as a miniature, rootless, Dionaea, which lives submerged under water and captures crustaceans and insect larvae. In the fifteenth chapter three more genera are briefly discussed, together with some supplemental materials on the physiology of related, but non-insectivorous plants. One important point is that plants in general are able to take up nutrients through their leaves. The chapter ends with an effort to reconstruct the evolutionary history of the group, in which the origin of the ability to react to stimulus, to digest animal matter, and to absorb the material that has been digested are explained. The scenario, which traces the novel features to plausible predecessors, is much like those that Darwin presents in other works.

The rest of the book (chapters XVI through XVIII) deals with insectivorous plants from another family (Lentibulariaceae), implying that the habit has evolved separately. Pinguicula, discussed in the sixteenth chapter, captures insects with its leaves. Experiments give results much like those on Drosera and its allies. The plants secrete a sticky fluid and digest and absorb the animal remains. The other genus, Utricularia, discussed in the last two chapters, has a somewhat different manner of capturing prey, as do some of its relatives. Utricularia is aquatic, and has bladders equipped with valves that allow crustaceans and other small animals to get in but not to get out. But these plants do not digest the animals that they capture. Rather they die and rot and the plants absorb the nutrients that are formed as breakdown products.

The Movements and Habits of Climbing Plants was first published as a journal article in 1865. It appeared as a book in 1875, shortly after *Insectivorous Plants*, as a “second edition” with a new preface and somewhat revised. Discussing it after *Insectivorous Plants* and before *The Power of Movement in Plants* makes it easier to understand the conceptual relationships between the latter two works. The former is a comparative study of the ability of plants to respond in an adaptive manner to stimuli, the latter an experimental analysis of the mechanisms by which they do so. In the first chapter of *Climbing Plants* Darwin divides almost all of these organisms into two major groups. The first is twining plants, which simply wind around a support; these he considers the simpler and more primitive. The second are those that grasp their support with various organs, which are modified leaves and other plant parts. The twining plants are shown to execute circling movements as they grow. As a result the plants are brought into contact with sticks or other objects and then wind around them, obtaining support. The circling movements, or nutations, result from differential growth and are easily produced. Sweeping a larger area makes it more likely that the plant will find a support. It is a random, or better undirected, search process. Later evolutionary stages elaborate upon this basic mechanism by adding the ability to respond to stimuli followed by further adaptions. The second chapter deals with leaf-climbers. The leaves revolve and are sensitive to stimuli. When they encounter a support the petioles may wind around it and grasp it. Or attachment may be provided by means of modified ribs. The third and fourth chapters are on tendril-bearers. Tendrils are modified leaves together with their petioles, the peduncles of flowers and other structures. They too revolve spontaneously, and they respond to touch. Some plants are transitional between leaf-climbers and tendril-bearers. The tendrils may simply twine around their support, but often there are adhesive organs that allow the plant to hang on. After attachment the tendrils may then contract into a pair of spirals thereby shortening the tendril and pulling up the stem of the plant. The spirals have the additional effect of making the tendril into a kind of spring with considerable elasticity, making it difficult to dislodge the plant from its support. The fifth chapter discusses a few other mechanisms of climbing. Root-climbers attach themselves to trees by putting forth roots and secreting an adhesive. In his concluding remarks Darwin explains what he thinks is the adaptive significance of climbing and the more advanced mechanisms of doing so. The climbing plants do not have to support themselves by heavy branches and that saves valuable resources. Twining
would have been the original mechanism, and leaf-climbers and tendril-bearers would be the modified descendants of twiners. These plants could climb directly upward, economizing on resources by virtue of the much shorter stems. By reference to the classification of the group Darwin shows that the ability to climb has evolved independently in unrelated forms. The power of movement occurs in a wide diversity of plant organs, and it is coupled with the ability to respond to stimuli including light, gravity and touch. In conclusion Darwin remarks that plants do not differ from animals in lacking the power of movement, but only manifest it when it is advantageous for them to do so.

The Power of Movement in Plants, published on November 22, 1880, justifies Darwin’s reputation as a plant physiologist of the first rank. It inspired a vast literature on plant growth hormones and related topics. It is a logical development of the book on climbing plants in which Darwin questioned some of the interpretations of Julius Sachs. When this book was published Sachs was much annoyed. The result was extended controversy. Darwin enlisted the assistance of his son Francis in this research and the fact that the younger Darwin was really a co-author is underscored by the use of the first person plural in the introduction. The book is long, technical, and full of experimental detail. In fact, this one is the least readable of Darwin’s books. For most readers, it would seem reasonable, following its authors’ advice, to read the introduction first, then go to the back of the book and read the last chapter. Then one might want to read at least some of the parts that are set in larger type.

The book is about the evolution of behavior. Plants grow by the expansion of their cells. The growing parts undergo spontaneous circling movements called “circumnutation” due to uneven expansion of the cells. By evolving an ability to respond to stimuli, plants have become able to grow in a particular direction, either toward or away from a given stimulus. These directed movements are called “tropisms” and have parallels in the “taxes” of animals. The movements are classified according to the type of stimulus and whether it is away from, or toward the stimulus. Thus the leaf of a plant might grow toward the light, and that would be a case of positive heliotropism. If it grew away from the force of gravity that would be negative geotropism, or, as Darwin put it, apogeotropism. Plants could also react to touch and humidity. The different parts of the plant, such as leaves and roots, would react in different ways, producing adaptive movements that lead them toward the light or water and nutrients. All this fitted in quite well with Darwin’s theory of natural selection, for the movements would vary in amplitude and direction and selection would favor having the plants move in the appropriate direction. Because circumnutation occurs spontaneously in all growing parts of the plant, the problem of where the movements came from in the first place was solved.

Darwin’s experiments show that the stimulus is received at the tip of the root or the shoot and then somehow transmitted to a point somewhat distant from it where the bending takes place. He draws an analogy with “lower” animals, which of course have nervous systems though plants do not. He ends the book as follows: “The course pursued by the radicle in penetrating the ground must be determined by the tip; hence it has acquired such diverse kinds of sensitiveness. It is hardly an exaggeration to say that the tip of the radicle thus endowed, and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements.”

Worms

The Formation of Vegetable Mould, through the Action of Worms, with Observations on their Habits was published on October 10, 1881. It was the last of Darwin’s books to be published. It appealed to a broad audience and sold very well. Worms are familiar objects, but most people haven’t given them much thought. The reader is fascinated by obscure details and curious facts. The book is replete with outstanding experimental work that doesn’t require much background to understand. It even has a philosophical message: the humble and industrious worm turns out to be a major shaper of the landscape.

Darwin got interested in earthworms soon after his return from the voyage of the Beagle. The topic evidently attracted his attention when he was visiting the home of his uncle Josiah Wedgwood II at Maer in Staffordshire. Darwin’s initial interest in them was mainly geological, and his thinking about such matters must have been affected by his work on coral reefs. He read a paper on that topic to the Geological Society of London on November 1, 1837 and it was published in their Transactions in 1840. He published
a note on vegetable mould in 1844, and seems to have taken up the study of worms again around 1869, when he published another short paper. During the 1870s he made observations on their biology and their geological significance. When he took up the study of their behavior and habits Darwin had already achieved greatness as an evolutionary physiologist and psychologist through his research on the behavior of plants and “higher” animals such as bees and vertebrates. From a neurophysiological point of view at least, earthworms are quite simple animals. Worms helps to fulfill the prediction that Darwin made in the Origin: “Psychology will be based on a new foundation, that of the necessary acquisition of each mental power and capacity by gradation.”

The book, however, is structured so as to put most of the geology last, because it is easier to understand the geology if one already knows about the biology of the worms. So Darwin begins, in Chapter I, with a discussion of their sensory capacities and feeding, based largely on his own experiments. In Chapter II he describes some surprising results. Worms seem able to exercise a kind of intelligence when they draw leaves into their burrows. ‘Intelligence’ has often been defined as the ability to benefit from experience and this was the concept that Darwin applied. Darwin backs up this view with many experiments. The leaves are drawn in partly as a means of plugging up the burrows, and partly as food. That topic leads naturally to considerations of how the worms burrow and how they ingest soil and extract food from it and deposit castings at the surface. They bring up a lot of material, some of it from considerable depth. Chapter III addresses the question of how much is brought up, and the quantity is most impressive. So too are the effects, for objects on the surface are buried, including large stones, which are undermined. Among the most impressive effects is the burial of ancient buildings, which is the subject of Chapter IV. Darwin studied several ancient ruins from this point of view. The first of these that he considers was a Roman villa at Abinger Hall, in Surrey. It was on the property of Thomas Henry Farrer, the husband of one of Darwin’s Wedgwood cousins. Farrer undertook a methodical excavation of the site. Darwin was present when the excavation began, and made use of Farrer’s notes. Darwin’s sons William, Francis and Horace visited other sites and made observations for him. Worms are also important agents of erosion, or, as Darwin puts it, the “denudation of the land,” and he devotes two chapters (V and VI) to that topic. With numerous observations and much quantitative data, Darwin establishes the fact that earthworms are responsible for the removal of an enormous amount of material from the soil, most of which ultimately makes its way to the sea and forms sedimentary rock. In the final chapter Darwin compares the effects of worms to those of corals. The corals are noteworthy for building things up, the worms for tearing them down. In either case we have a theme that often recurs in Darwin’s work. Major changes in the earth and its inhabitants take place gradually, by small steps, and over vast periods of time.

SECONDARY LITERATURE AND OTHER SOURCES

The major purpose of this Guide is to enable the reader to understand and appreciate Darwin by reading his works. Those publications and his other writings such as his notebooks, unpublished manuscripts, and correspondence are what historians call “primary sources.” Commentary written about him by historians and others is considered “secondary” source material. Often the distinction breaks down, as when a letter by Darwin is published together with scholarly notes and commentary. The additional sources both primary and secondary can be of considerable use to anyone interested in Darwin and his accomplishments. This Guide would not have been written had it not been felt that the reader might benefit from a certain amount of exegesis. However, the secondary literature is as variable in quality as it is vast in quantity. My first book on Darwin, written when I was a very young scientist, was evoked as a reaction to the secondary literature that fell into my hands. I asked myself why somebody who understands evolution hadn’t read all of Darwin and explained what he was up to. This I did, and, although the work has become somewhat dated, the basic point that Darwin was a very philosophical scientist with a unitary way of thinking became at least an implicit premise in Darwin studies ever since.

The authors of secondary sources have their own agendas. There is nothing wrong with that, especially if an author’s agenda is to set the record straight. Yet even with the best of intentions a certain amount of distortion is inevitable. The problem may or may not be obvious when somebody produces an abridged edition of a book, or assembles an anthology. On the other hand, Darwin has been the subject of a vast literature written from a hostile point of view and often
intended to discredit him, his science, and even science in general. Such hostility often has religious motives. But much of it is generated by political sentiment. The competitive world that Darwin revealed may seem repugnant, and some persons feel that by denying such aspects of the natural world they will go away. Others, mixing up religion with politics, maintain that the struggle for existence is the will of God, and use that as an argument for laissez-faire economic ideology and the kind of reactionary politics that so often goes with it. So we have advocates of various kinds of political ideology, left, right and center, battling with one another about what has often been called Social Darwinism, with science caught in the cross-fire. And there is a long tradition of trying to make evolutionary biology into a kind of secular religion.

The historiography of Darwinism and Darwinism itself have been the products of the times that have given rise to them. To understand that literature we need to place it in its historical context. By the time of his death Darwin and his followers had convinced the scientific community that evolution has indeed occurred. But his thesis that natural selection has been the main, albeit not exclusive, mechanism that has caused it, although respectable, was only held by a minority of biologists, such as Henry Walter Bates, Fritz Müller and August Weismann. The historian Peter Bowler has written of a “non-Darwinian revolution.” Soon after Darwin’s death there was a worldwide reaction against Darwinism and against the rationalism that had given rise to it. For that reason idealistic philosophy became popular. Among scientists alternatives to natural selection flourished, including various notions often called Lamarckian. Some of these were vague claims that ultimately evolution would be explained as a result of as yet unspecified laws of nature. The notion that evolution is like the development of an embryo, headed toward a definite ultimate condition, was also very popular, especially among those who wanted to believe that evolution is necessarily progressive and that progress is always a good thing. There were, indeed, some serious problems with Darwin’s theory. For one thing he had not ruled out “Lamarckian” mechanisms. For another, he did not have a good theory of heredity.

One might think that the discovery of Mendel’s laws would have immediately vindicated natural selection. Nothing of the sort happened however. The early Mendelians such as Thomas Hunt Morgan were vehemently opposed to natural selection. It took decades before genetics was fully assimilated into evolutionary theory. During that period, Darwin’s followers remained a minority. They became a majority among scientists only as the alternatives gradually became untenable. Naturally, the historical accounts that were written at the time reflected that very situation. The genetical objections to natural selection were disposed of in the 1920s. During the late 1930s and up to around 1950 a “synthetic theory” of evolution emerged. It put together the results of genetics, systematics, paleontology and other disciplines into a modernized version of Darwin’s theory. Important books accomplishing that were written by the Russian-American Theodosius Dobzhansky, the German-American Ernst Mayr, the Englishman Julian Huxley, the German Bernhard Rensch, the Russian Ivan Ivanovich Schmalhausen, and the Americans George Gaylord Simpson and G. Ledyard Stebbins.

When the centennial of the publication of The Origin of Species was celebrated in 1959, a large number of scientists as well as others had occasion to reconsider what Darwin had accomplished. The shortcomings of much of the old historiography were painfully apparent. One consequence was a new historiography. The impetus was provided by four zoologists: Gavin De Beer, Sydney Smith, Ernst Mayr, and Michael Ghiselin. De Beer looked at Darwin’s early notebooks and published them with commentary. Smith studied and organized the materials that were preserved at the Cambridge University Library and showed how to use them. Mayr wrote several influential papers and an introduction to a re-issue of The Origin of Species. He was also a post-doctoral sponsor of Ghiselin, whose book, The Triumph of the Darwinian Method, put Darwin’s accomplishment into a modern philosophical perspective. Mayr encouraged the work of other young Harvard Darwin scholars, such as Mary P. Winsor, Jonathan Hodge and Frank Sulloway. A new generation of historians got interested in Darwin and the history of evolutionary biology and the Cambridge archives increasingly gave important results. The science of evolutionary biology continued to advance, and Darwin’s ideas about sexual selection and related topics were rediscovered. One consequence was the debate about “sociobiology” that arose in the 1970s and created much commentary, some of it well informed.

To write intelligent commentary about science,
one needs to understand the science itself. This helps to explain why a movement called “externalism” arose as an alternative to the history of ideas. At its worst it was an effort to show that evolutionary biology is a capitalist plot. When one starts looking at science from the point of view of the religious and political climate of the times, one may come up with valuable results. On the other hand, there has been an unfortunate failure among some historians to appreciate the originality of Darwin and other scientists. Professional historians have made a magnificent contribution to Darwin studies by the editing and publishing of texts. The complete correspondence of Darwin is being published with excellent commentary. Philosophers have also contributed a great deal to the Darwin literature. Regrettably, the tradition in that discipline has been to consider oneself an expert on things in general, and to write about the philosophy of a subject without knowing much about it and therefore get the fundamental premises wrong. Things began to change when the philosophy of biology became a distinct specialty thanks largely to the efforts of David L. Hull. There has also been a lot of input from the practitioners of other disciplines, such as anthropology, psychology, and geology, to which Darwin made important contributions, and from historians of those subjects. Such commentary can be valuable, especially when an author puts specialist expertise to good use. But such authors are not always aware of their own limitations. Perhaps the best advice that can be offered to the users of this guide and its bibliography is caveat emptor.

Having said that does not relieve me of the responsibility of giving the reader some pointers about what items listed in the bibliography might be worth reading. The standard work on Darwin’s life remains the Life and Letters written by his son Francis (1887) and supplemented by a work called More Letters of Charles Darwin by him and A. C. Steward (1903). Any such work has the drawback of the editor having to select one item in favor of another; this one suffers from certain sensitive materials having been suppressed. The Correspondence of Charles Darwin published by Cambridge University Press beginning in 1985 with Frederick Burkhardt and Sydney Smith as founding editors gives unabridged versions of both sides of the correspondence and an enormous amount of supplementary material as well. Volume 16 (2008) covers 1868 and it will be years before the work is completed. One of Darwin’s daughters, Henrietta Litchfield, edited a fine contribution to the “life and letters” genre entitled Emma Darwin: a Century of Family Letters (1915). One of his grand-daughters, Gwen Raverat, wrote a charming family memoir entitled Period Piece: A Cambridge Childhood (1952). Also providing the same kind of materials are the lives and letters of Darwin’s friends and supporters. Thomas Henry Huxley’s son Leonard produced the Life and Letters of Thomas Henry Huxley (1900) and The Life and Letters of Sir Joseph Dalton Hooker (1918).

Many biographies of Darwin have been published, including a few good ones. Among the more recent biographies, Janet Browne’s 2-volume work (1995–2002) is particularly good, but many readers will prefer something shorter like Ernst Mayr’s One Long Argument (1991) which reflects the views of one of the architects of modern evolutionary theory. Someone looking for a good introductory overview might well read Peter Bowler’s Charles Darwin, the Man and His Influence (1990).

Quite a number of biographical works focus upon just a part of Darwin’s life and work. We give a few good examples. Ralph Colp, Jr., M.D. went into Darwin’s mysterious ailment in great depth in his To Be an Invalid (1977) and concluded that it was largely of psychosomatic origin. We may note that other possibilities have been entertained, most recently that he had an allergy to wheat. John Bowlby goes over the same problem from somewhat different psychological point of view in his Charles Darwin, a New Life (1990). Frank Sulloway considers the effect of birth order on the mentalities of Darwin and other scientists in his Born to Rebel (1996). Gruber and Barrett present some ruminations on the fascinating topic of Darwin’s creativity in their Darwin on Man (1974). Sandra Herbert’s Charles Darwin, Geologist (2005) is a fine piece of scholarly writing that goes well beyond geology in its scope. For coral reefs the classic study by Davis entitled The Coral Reef Problem (1928) is a bit technical for most readers and largely outdated, but still invaluable. Mea Allen’s Darwin and his Flowers: the Key to Natural Selection (1977) is good for a general audience.

A number of books, many of them multi-authored, that relate Darwin to various larger themes. We here give a few interesting examples. Thomas Glick has edited a volume that considers the impact of Darwinism on various groups of people including national cultures entitled The Comparative Reception of Darwinism (1972). Also along the same lines is Disseminating Darwinism: the Role of Place, Race,

Multi-authored books that consider Darwin’s accomplishments in general or a particular one of them might be viewed as a separate genre. They have often been assembled for the purpose of commemorating events such as Darwin’s birth or death or celebrating the publication of one of his works. A classic example is Darwin and Modern Science: Essays in commemoration of the Centenary of the Birth of Charles Darwin and of the Fiftieth Anniversary of The Origin of Species, edited by A.C. Seward (1909). More useful as a survey of recent opinion about Darwin than for understanding Darwin himself is the ponderous The Darwin Heritage edited by David Kohn (1985). Paul Ekman has edited a fine volume on Darwin and Facial Expression: a Century of Research in Review (1973). A similar effort that is not quite so accessible is Bernard Campbell’s Sexual Selection and the Descent of Man 1871–1971 (1972).

A great deal of material is being made available online. Although this move increases the availability of both manuscripts and published sources, interpreting them remains as formidable a task as ever. To cope with that plethora of resources, it is all the more important to read Darwin’s works, and read them with understanding.
Charles Darwin Chronology

This chronology has been assembled from miscellaneous sources, most of which are cited in the bibliographies. Among these, Darwin’s own publications and the many volumes of correspondence that have been published are critical. Other sources include Darwin’s personal diaries and those kept by his wife. The various sources sometimes give different dates for the same event. CD is an abbreviation for Charles Darwin.

Note: CD → J.D. Hooker (or others) indicates a letter from Darwin to the recipient.

1765
January 3, Susannah Wedgwood (mother of CD) born

1766
May 30, Robert Waring Darwin (father of CD) born

1798
April 7, Marianne Darwin (sister of CD) born

1800
September 14, Caroline Darwin (sister of CD) born

1803
October 3, Susan Darwin (sister of CD) born

1804
December 29, Erasmus Alvey Darwin (brother of CD) born

1808
May 2, Emma Wedgwood (cousin, later wife, of CD) born

1809
February 12, Sunday, Charles Darwin born (Shrewsbury)

1810
May 10, Catherine Darwin (sister of CD) born

1811
February 5, Regency began

1812
June, War of 1812 began

1814
Treaty of Ghent ended War of 1812

1815
June 18, Napoleon defeated at Waterloo

1817
Spring, CD began to attend Mr. Case’s school
July 15, his mother died

1818
Began to attend Dr. Butler’s school in Shrewsbury

1819
May 24, future Queen Victoria born

1820
January 29, George the Third died
July, horseback tour with Erasmus Alvey Darwin

1821
July 19, George IV crowned

1822
October, began chemical experiments with Erasmus Alvey Darwin

1825
June 17, left Shrewsbury school
October 22, matriculated at Edinburgh University

1826
February 9, note on Aphrodita aculeata recorded
June 15, walking tour to North Wales
November 6, to Edinburgh
November 10, elected to Plinian Society (a student group)
December 5, elected to Council of Plinian Society
December 16, attended meeting of Wernerian Society

1827
March 24, R. Grant publicly discussed Darwin’s research
March 27, read paper to Plinian Society
Late May, trip to Dublin, Portran, London and Paris with Josiah Wedgwood II
September, met Sir James Mackintosh at Maer
October 15, matriculated at Cambridge University

1828
Much insect collecting
January, began studies at Cambridge
Summer, trip to Barmouth
December 20, from Cambridge to Shrewsbury for Christmas

1829
January 9, CD → W.D. Fox, remarks that he is reading Adam Smith and Locke (probably An Essay Concerning Human Understanding) for his “Little Go” examination
February 19–24, trip to London where he stayed with Erasmus Alvey Darwin and visited the entomologists Hope and Stephens
February 23, tea with Stephens
October, enrolled in J.S. Henslow’s botany course
December, 3 weeks in London with Erasmus Alvey
Darwin, visited Hope and Stephens, dined with Sir James Mackintosh

1830

JANUARY 1, returned to Cambridge
JUNE 26, King George IV died; succeeded by William IV
MARCH 24, took “Little Go” examination
AUGUST, entomological tour with Hope and Eyton
OCTOBER, enrolled in Henslow’s botany course again

1831

JANUARY 22, passed examination for B.A.
FEBRUARY, read Herschel’s Preliminary Discourse
APRIL–JULY, preparations for trip to Tenerife
MAY, received (anonymous) gift of microscope from Herbert
JULY 10, received clinometer
AUGUST 3 or 4, began geological tour with Sedgwick
AUGUST 5, left Shrewsbery with Sedgwick for Llangollen
AUGUST 6, Velvet Hill to Ruthin
AUGUST 7, Sunday, Ruthin to Denbigh
AUGUST 8, Denbigh to Abergele
AUGUST 9, Abergele to Conwy
AUGUST 10, Conwy, Llanbedr, Penwaenmawr
AUGUST 11, Aber Falls, Penrhyn
AUGUST 12, Anglesey to Holyhead, parted company with Sedgwick at about this time
AUGUST 13, returned from Anglesey
AUGUST 14, Sunday, Cwm Idwal to Capel Curig
AUGUST 15, Moel Siabod
AUGUST 16, Capel Curig to Ffestiniog
AUGUST 17, Ffestiniog to, probably, Barmouth
AUGUST 18–28 (Sunday), Barmouth, with Whitley
AUGUST 24, date of Henslow letter about position of naturalist on Beagle
AUGUST 26, formal invitation letter to participate
AUGUST 29, received Henslow letters on return to Shrewsbury
AUGUST 30, CD → Henslow, saying he cannot participate
AUGUST 31, to Maer, consulted with his uncle Josiah Wedgwood II
SEPTEMBER 1, CD → Henslow from Shrewsbury, accepting offer
SEPTEMBER 2–5, Cambridge
SEPTEMBER 5–11, London, preparing for voyage
SEPTEMBER 11–16, trip to Devonport with FitzRoy to see the Beagle
SEPTEMBER 17–20, London, preparing for voyage
SEPTEMBER 21, Cambridge
SEPTEMBER 22, Shrewsbury
OCTOBER 2, left home for voyage, via London
OCTOBER 24, reached Plymouth, began diary
DECEMBER 10 and 21, sailed but driven back
DECEMBER 27, sailed for South America
OCTOBER 17 (ca.), notes on *Rhea americana*

OCTOBER 26–30, Montevideo

OCTOBER 30, departed on *Beagle* for Buenos Aires

OCTOBER 31, first observations on gossamer of spiders

NOVEMBER 2–10, Buenos Aires

NOVEMBER 11, arrived at Montevideo

NOVEMBER 14–28, Montevideo and environs; Darwin’s annotations in Lyell’s *Principles*, vol. 2 date from this month

DECEMBER 1, south of Cape Corrientes, crustacean anatomy

DECEMBER 3, *Beagle* anchored near San Blas

DECEMBER 15, studied marine flatworm

DECEMBER 16, reached coast of Tierra del Fuego

DECEMBER 17, entered Le Maire Straits, anchored at Bay of Good Success

DECEMBER 18, landed to encounter Fuegians

DECEMBER 19, exploration on land

DECEMBER 21–22, south of Wollaston Island and Cape Horn

1833

Late JANUARY and early FEBRUARY, some observations on Fuegians, exploration of that vicinity

FEBRUARY 26, departed Tierra del Fuego for Falklands

MARCH 1–APRIL 6, East Falkland Island

MARCH 7, impressed by the fecundity of a nudibranch

MARCH 31, first detailed work on barnacle anatomy; struck by their similarity to crustaceans rather than mollusks

APRIL 11, CD → Henslow; first mention of interest in coral reefs

APRIL 28, arrived at Maldonado

APRIL 29, began residence at Maldonado (with excursions)

MAY 14, notes on Pampas woodpecker

JUNE 28, Queen Victoria crowned

JULY, engaged Syms Covington as servant

JULY 24, departed on *Beagle* from Maldonado; *Adventure* now functional

AUGUST 3–11, Rio Negro

AUGUST 4, Barrancas al Sur

AUGUST 5–7, El Carmen

AUGUST 8, trip to salt lake

AUGUST 11–SEPTEMBER 20, overland trip from Rio Negro to Buenos Aires

AUGUST 13, reached camp of General Rosas

AUGUST 15, meeting with General Rosas

AUGUST 24, arrived at Bahia Blanca

AUGUST 25–28, visit to *Beagle*

AUGUST 29–SEPTEMBER 6, Punta Alta fossil collecting

SEPTEMBER 8, continued land journey; *Beagle* sailed

SEPTEMBER 20–26, Buenos Aires

SEPTEMBER 27–NOVEMBER 4, expedition to Santa Fe and return to Montevideo

OCTOBER 1, Parana River fossils

OCTOBER 3–4, sick in bed in Santa Fe

OCTOBER 5, crossed river to Parana

OCTOBER 12, headed down Parana River by boat, with delays

OCTOBER 23–NOVEMBER 2, Buenos Aires

NOVEMBER 4–DECEMBER 6, Montevideo

NOVEMBER 14–28, expedition to Mercedes

NOVEMBER 29–DECEMBER 4, on shore in Montevideo

DECEMBER 6, sailed from Rio Plata

DECEMBER 23–JANUARY 4, 1834, Port Desire; geological field work on shore

1834

JANUARY 9, arrived at Puerto San Julian

JANUARY 26, entered Strait of Magellan

FEBRUARY 2, Port Famine

FEBRUARY 6, climbed Mount Tarn

FEBRUARY 13, observations on tunicate larva

FEBRUARY 25–26, studied anatomy of holothurian

FEBRUARY 28, anchorage at Wollaston Island

FEBRUARY 28, at entrance to *Beagle* Channel

MARCH 1, began observations on cephalopod bryozoans

MARCH 5, sailed from Tierra del Fuego

MARCH 10–APRIL 7, East Falkland Island (second visit); first letter from Henslow received on arrival

APRIL 16, *Beagle* arrived at Santa Cruz River

APRIL 16, *Beagle* laid up on shore for cleaning; Darwin collected specimens from it

APRIL 18–MAY 8, expedition up Santa Cruz River; read third volume of Lyell’s *Principles* after return

MAY 12, left Patagonia for Strait of Magellan

JUNE 1–8, Port Famine

JUNE 10, departure from Tierra del Fuego via Magdalen channel for west coast of South America

JUNE 28–JULY 13, Chiloé Island

JULY 23, landed at Valparaiso, two letters from Henslow reached him

JULY 24, CD → Henslow

AUGUST 2–NOVEMBER 10, resided in Valparaiso with R. H. Corfield

AUGUST 7, letter from Caroline Darwin arrived

AUGUST 14, New Poor Law enacted

AUGUST 14–27, geological excursion to base of Andes

AUGUST 28–SEPTEMBER 6, Santiago

SEPTEMBER 6–26, traveled back to Valparaiso

SEPTEMBER 27–end of OCTOBER, stayed with R.H. Corfield; sick in bed, *Beagle*’s departure delayed until fit to travel

NOVEMBER 10, sailed for Chiloé

NOVEMBER 21, arrived in Chiloé

1835

JANUARY 7–15, Low’s Harbor

JANUARY 8, discovered the aberrant barnacle *Cryptophialus* and made detailed drawings of its anatomy

JANUARY 18, return to Chiloé

JANUARY 19, observed eruption of Orsono volcano

JANUARY 22–28, land excursion

FEBRUARY 4, left Chiloé

FEBRUARY 8–22, Valdivia

FEBRUARY 20, earthquake

MARCH 4–6, Concepcion; studies effects of earthquake
MARCH 5, observations on red snow
MARCH 11, Valparaiso, with R. H. Corfield
MARCH 14–18, Santiago; visited Alexander Caldcleugh
MARCH 18–APRIL 10, crossed Cordillera of the Andes
MARCH 26, bitten by Triatoma; possible infection with Chagas’ disease
APRIL 10–15, Santiago
APRIL 15–17, traveled to Valparaiso
APRIL 17–27, with R.H. Corfield
APRIL 27–JULY 1, journey from Valparaiso to Coquimbo and Copiapo, rejoined Beagle
JULY 2–3, in Copiapo at Mr. Bingley’s house
JULY 6, sailed on Beagle from port of Copiapo
JULY 12, arrived at Iquique, Peru
JULY 19–SEPTEMBER 6, Callao and Lima
SEPTEMBER 7, Beagle sailed for Galapagos
SEPTEMBER 15–OCTOBER 20, Galapagos
SEPTEMBER 15, Beagle surveyed Chatham (San Cristobal) Island
SEPTEMBER 16, landed near Wreck Point, Chatham Island
SEPTEMBER 17, landed at Stephens Bay, Chatham Island
SEPTEMBER 18, landed at Terrapin Road, Chatham Island
SEPTEMBER 19–20, Beagle went to Fresh Water Bay and back
SEPTEMBER 21–22, explored craterized district
SEPTEMBER 23, sailed for Charles Island
SEPTEMBER 24, arrived at Charles Island, collected near Post Office Bay, met the governor, Nicholas Lawson
SEPTEMBER 25–26, trip to highlands via Black Beach
SEPTEMBER 27, climbed Saddle Mountain
SEPTEMBER 28, left Charles Island, passed Brattle Island
SEPTEMBER 29, arrived at Albemarle Island
SEPTEMBER 30, arrived at Banks Cove, Albemarle Island
OCTOBER 1, on shore at Tagus Cove, Albemarle Island
OCTOBER 2, Beagle departed for James Island
OCTOBER 8, Beagle reached Bucaneeve Cove, James Island
OCTOBER 8–17, James Island, camped on shore
OCTOBER 9, trip to interior, observed tortoises
OCTOBER 11, visited James Bay salina and environs
OCTOBER 12–13, trip to interior
OCTOBER 14–17, Bucaneeve Cove, observed land iguanas
OCTOBER 18, finished survey of Albemarle Island
OCTOBER 19, to Abingdon Island, then Culpepper and Wenman
OCTOBER 20, headed for Tahiti
NOVEMBER 9, off Tuamotus, saw first atolls
NOVEMBER 15–26, Tahiti (visit to reef off Matavai)
NOVEMBER 16, paper read to Cambridge Philosophical Society
NOVEMBER 18, paper on South American Geology read to Geological Society of London
NOVEMBER 25, Queen Pomare was entertained on board Beagle
DECEMBER 21–30, New Zealand

1836

JANUARY 12, arrived in Australia (Sydney Cove)
JANUARY 16–27, journey to interior
JANUARY 16, Paramatta
JANUARY 17, Emu Ferry, crossed Nepean River
JANUARY 19, Govett’s Leap, Wolgan
JANUARY 20, Wallerawang to Bathurst
JANUARY 21, Bathurst
JANUARY 22, began return journey, via O’Connell
JANUARY 24, sick in bed
JANUARY 26, Emu Ferry, met Captain King; to Dunheved
JANUARY 27, to Paramatta with King, on to Sydney
JANUARY 30, left Sydney for Tasmania
FEBRUARY 5–17, Tasmania
FEBRUARY 7, day in Hobart, collected terrestrial flatworms
FEBRUARY 11, climbed Mount Wellington
FEBRUARY 12, met George Frankland, the Surveyor-General
FEBRUARY 16, to New Norfolk for a day
FEBRUARY 17, sailed from Hobart
MARCH 4–5, observations on “confervae” at sea
MARCH 6–14, King George’s Sound, Australia
APRIL 1–12, Cocos-Keeling Islands
APRIL 29–May 9, Mauritius
May, Red Notebook begins around this time
MAY 31–June 15, Cape of Good Hope
JUNE 3, first meeting with Sir John Herschel
JUNE 8–15, socialized with Herschel and others
JUNE 28, FitzRoy/Darwin paper on Tahiti written at sea
JUNE 29, crossed Tropic of Capricorn
JULY 8–14, St. Helena
JULY 19–23, Ascension Island
AUGUST 1–6, Bahia, Brazil
AUGUST 12–17, Pernambuco
AUGUST 21, crossed equator
SEPTEMBER 4, St. Jago
SEPTEMBER 9, crossed Tropic of Cancer
SEPTEMBER 20–24, Azores
OCTOBER 2, arrived at Falmouth
OCTOBER 4, reached Shrewsbury (absence 5 years, 2 days)
OCTOBER 14, London
OCTOBER 15, Cambridge
OCTOBER 17, Dined at Henslow’s, met Charles Cardale Babington
OCTOBER 20, London, stayed with his brother, Erasmus Alvey Darwin
OCTOBER 29, Lyells had Richard Owen to dinner to meet Darwin
NOVEMBER, elected member of Geological Society of London
NOVEMBER 1, attended meeting of Linnean Society, introduced by Yarell as visitor
NOVEMBER 5, dinner at Roderick Murchison’s; Richard Owen and Charles Babbage were there
NOVEMBER 12, Maer
NOVEMBER 16, Shrewsbury
DECEMBER 2, London
DECEMBER 13, Cambridge
DECEMBER 16–MARCH 6, 1837, lived in lodgings, Fitzwilliam Street, Cambridge

1837

JANUARY, in Cambridge arranging specimens, finished last part of Journal manuscript
JANUARY 3, visited London and probably consulted with Richard Owen about fossils
JANUARY 4, read paper on elevation of Chile to Geological Society of London
FEBRUARY 17, attended Geological Society meeting
FEBRUARY 27, discussed fused sand tubes at meeting of Cambridge Philosophical Society
MARCH 6, moved to London
MARCH 7–12, Frank Sulloway’s date for “conversion” to evolution
MARCH 13, took up residence at Great Marlborough Street
MARCH 13 to end of SEPTEMBER, worked on Journal full time
MARCH 14, Tuesday, read paper on Rhea to Zoological Society
APRIL 11, important meeting at Owen’s apartments, with Owen and A. Farre
APRIL 19, Owen read paper on Toxodon to Geological Society
MAY 3, read paper on extinct Mammalia to Geological Society
MAY 10, read paper on Galapagos finches to Zoological Society
MAY 31, read paper on coral formations to Geological Society; Owen was present
End of JUNE, Red Notebook probably completed
JUNE, text of Journal completed (sent to printers in August)
JUNE 20, King William IV died; succeeded by Victoria
JUNE 23, finished Notebook A
JULY 7–13, ca., met with Owen to work on fossils
AUGUST 25, awarded grant for Zoology of voyage
SEPTEMBER 20, experienced palpitations of heart
SEPTEMBER 22, finished proofs of Journal, to Shrewsbury
OCTOBER, November, finished proofs of Journal, began Volcanic Islands
OCTOBER 21, returned to London
NOVEMBER 1, paper on worms read before Geological Society
NOVEMBER 14, finished paper on worms for Transactions of Geological Society
NOVEMBER 20–21, visited W. D. Fox at Isle of Wight

1838

Work on Volcanic Islands continues to early June, work on zoology
JANUARY 17, finished geology of Galapagos and Ascension
FEBRUARY, Owen on fossil mammals part 1 published
FEBRUARY 5, elected Vice-President of Entomological Society
FEBRUARY 16, elected Secretary of Geological Society; served until FEBRUARY 19, 1841
FEBRUARY 25, finished account of St. Helena
MARCH, began Notebook C (2nd on transmutation)
MARCH 7, read paper on continental elevation to Geological Society
MARCH 18, read paper on earthquake to Geological Society
MARCH 28, observations on primates at London zoo
APRIL 16, began geology of Cape of Good Hope, Sydney
APRIL 25, attended Geological Society meeting
MAY, ended Notebook B
MAY, first part of Waterhouse on Mammalia published
MAY 1, health began to decline
MAY 10–13, visit to Henslow at Cambridge
MAY 15, began work on geology of Tasmania and New Zealand
MAY 22, began work on geology of St. Jago and Cape Verde
JUNE 21, elected to Athenæum
JUNE 23, finished Notebook C
JUNE 23, departed for Scotland
JUNE 28–JULY 5, field work on Glen Roy
JUNE 28, coronation of Queen Victoria
JULY, began Notebook D (3rd on transmutation); first part of Birds by Gould published
JULY 13, reached Shrewsbury
JULY 15, began Notebook M
JULY 29, to Maer
AUGUST 1, to London
AUGUST 1–SEPTEMBER 6, wrote Glen Roy paper
FALL, read Whewell’s History of the Inductive Sciences
SEPTEMBER, 2nd part of Mammalia published
SEPTEMBER 6, finished Glen Roy paper
SEPTEMBER 28, began to read Malthus on population
OCTOBER 2, completed Notebooks M and D, and began Notebooks N and E (4th on transmutation)
OCTOBER 3, finished Malthus on population, Lavater on physiognomy
OCTOBER 5, began “paper” on coral reefs–became a book
OCTOBER 12, finished Discourses by Joshua Reynolds
OCTOBER 25, to Windsor for two days
OCTOBER 27, Journal: wrote preface and addenda
NOVEMBER, 3rd part of Mammalia published
NOVEMBER 9, to Maer with Hensleigh & Fanny Wedgwood
NOVEMBER 11, Sunday, engaged to marry Emma Wedgwood
NOVEMBER 13, CD → Lyell on Comte
NOVEMBER 14, Shrewsbury
NOVEMBER 19, back to London, saw FitzRoy
NOVEMBER 21, Wednesday, attended Geological Society meeting
NOVEMBER 24, Saturday, dined with Lyells; conversed about geology and economics
NOVEMBER 25, Sunday, went with Erasmus Darwin for tea at Carlyles’–their first meeting
DECEMBER 6, hunting for housing in London with Emma;
she returned home on the 21st.

DECEMBER 19, attended meeting of the Geological Society

DECEMBER 31, took possession of house at 12, Upper Gower Street

1839

JANUARY, *Birds, Zoology* 3(2) published

JANUARY 1, Dinner at Erasmus Darwin's, with Carlyles, Hensleigh Wedgwoods; occupied house at 12, Upper Gower Street

JANUARY 11, to Shrewsbury

JANUARY 15, to Maer

JANUARY 18, to London

JANUARY 20, Sunday, Lyells called on him

JANUARY 22, dined at Lyells'

JANUARY 24, elected Fellow of the Royal Society of London

JANUARY 28, to Maer

JANUARY 29, Tuesday, married Emma Wedgwood at Maer Church

FEBRUARY & MARCH, some species work, corals

FEBRUARY 5, began to study German

FEBRUARY 7, 21, 28, Glen Roy paper read, published soon thereafter; resumed work on coral reefs

MARCH, 2nd part of *Fossil Mammalia, Zool.* 1(2) published

MARCH, elected Fellow of the Zoological Society

MARCH 10, ill for several days

MARCH 20, finished Blumenbach's essay on generation

MARCH 26, finished Spallanzani's essay on animal reproduction, Wells on instinct, Cline on instinct, Erasmus Darwin's *Zoonomia,* Volume I, Moore on pigeons

MARCH 28, Adam Sedgwick called

APRIL, May, distributed questionnaire on animal breeding

APRIL 1, Monday, gave party for Henslows, Lyells, L. Horner, Dr. W. H. Fitton, and Robert Brown

APRIL 26, to Maer

MAY, *Fossil Mammalia, Zoology* 1(3) published

MAY 13, to Shrewsbury

MAY 18, finished Stanley on birds, Mackintosh on ethical philosophy, Bell on the hand, Lamarck's *Philo
c.

May 20, to London

MAY 27, Alphonse de Candolle probably at dinner

JUNE 1, *Journal of Researches* published; finished King's and FitzRoy's contributions to the same work

JUNE 30, finished Walker on intermarriage

JULY, *Birds, Zoology* 3(3) published

JULY 10, finished Notebook E

AUGUST 15, *Journal of Researches* issued separately

AUGUST 23, to Maer

AUGUST 26, to Birmingham for British Association meeting

SEPTEMBER, *Mammalia, Zoology* part 3, published

SEPTEMBER 12, to Shrewsbury

SEPTEMBER 25, finished Prichard's *Physical Researches

SEPTEMBER 29, finished Hume's *Dialogues on Natural Religion,* Swainson on biogeography

OCTOBER 2, to London

NOVEMBER, *Birds, Zoology* 3(4) published

NOVEMBER 14, attended Geological Society meeting; Buckland contradicted Darwin's views

NOVEMBER, note on rock seen on an iceberg published

DECEMBER 24 or 25, became ill, remained so for about two months

DECEMBER 27, William Erasmus Darwin born; Darwin's notes on his children's behavior begin on this day and end in July, 1856

1840

Penny Post introduced

Ill much of the time, did a lot of work on species, at some time (early?) read Holland's *Medical Notes

JANUARY 6, read Koelreuter papers

JANUARY 16, finished Vol. I of Müller's *Physiology

JANUARY, *Fish, Zoology* 4(1) published

FEBRUARY 7, finished Brougham on natural theology

FEBRUARY 10, finished Blackwall on zoology

FEBRUARY 15, finished Henslow on botany

FEBRUARY 24, skimmed Whewell's Bridgewater Treatise again

MARCH 4, read Agassiz on glaciers

MARCH 24, wrote Geological Society, resigning as Secretary for reasons of ill health

MARCH 26, began work on coral reef book

APRIL, *Fossil Mammalia, Zoology* 1(4) published

APRIL 3, trip to Shrewsbury

APRIL 6, finished Isidore Geoffroy Saint-Hilaire's *Zoologie Generale

APRIL 20, read Erasmus Darwin's *Phytologia

APRIL 24, read Spallanzani's essays on generation, Mandeville's *Fable of the Bees

APRIL 28, or soon thereafter, end of Notebook N

JUNE, *Fish, Zoology* 4(2) published

JUNE 10–NOVEMBER 14, went to Maer; reading list includes Bell's *Anatomy of Expression,* Buffon, Tournefort, Haller's physiology, Buckland's Bridgewater Treatise, and many works of travel and literature

AUGUST 4, became seriously ill; correspondence ceased for five months

AUGUST, "Mould," elevation papers published

NOVEMBER 14, to London

DECEMBER 15, began last part of *Birds for Zoology

DECEMBER 15, finished Fleming's *Philosophy of Zoology

DECEMBER 17, finished Humboldt's *Personal Narrative

DECEMBER 21, finished Guillemin's article on hybrids

1841

FEBRUARY 20, *Birds, Zoology* 3(5) completed

MARCH, *Birds, Zoology* 3(5) published

MARCH 2, Ann Elizabeth Darwin ("Annie") born

APRIL, *Fish, Zoology,* 4(5) published

APRIL 4, finished paper on boulders and till

APRIL 14, paper on erratic boulders read to Geological Society

MAY 13, read Linnaeus ("Biberg") on economy of nature

MAY 16, read Prévost and Dumas on zoosperms
MAY 28, went to Maer, then Shrewsbury
JULY 23, back to London
JULY 26, resumed work on coral after more than 13 months
AUGUST 21, Humble-bees paper in Gardeners’ Chronicle
SEPTEMBER, observations on castings of worms
OCTOBER, Pernambuco bar paper published
OCTOBER 25, finished Youatt on sheep
OCTOBER 31, had breakfast at Owen’s
NOVEMBER 10, finished Sprengel’s Entdeckte Geheimniss;
Richard Owen and his wife visited
NOVEMBER 21, finished Liebig on agricultural chemistry
DECEMBER 4, finished Godwin on population
DECEMBER 14, paper on ancient glaciers read before the
Geological Society
DECEMBER 18, finished Hooker’s Botanical Miscellany

1842
Very poor health in 1841 and 1842
General strike in Britain
JANUARY 3, Coral Reefs sent to publishers; first draft of
work on species (“Sketch”)
JANUARY 3, finished Waterhouse on marsupials
JANUARY 29, met Alexander von Humboldt at Murchison’s
house in London
FEBRUARY 11, appointed by Council of the British
Association to committee on zoological nomenclature
FEBRUARY 20, read Botanic Garden and Temple of Nature
by his grandfather, Erasmus Darwin
FEBRUARY 28, finished Bechstein’s Naturgeschichte
MARCH 7, to Shrewsbury for 10 days
APRIL 9, finished second volume of Müller’s Physiology
APRIL 24, finished Smellie’s Philosophy of Natural History
MAY 6, finished proofs of Reefs, published the same month
MAY 7–17, trip to Shrewsbury
MAY 18, left for Maer
MAY 26, manuscript note on worms burying things
JUNE 10, finished Miller’s Old Red Sandstone
JUNE 13, manuscript notes on worms
JUNE 15, left for Shrewsbury, “Sketch” of species theory
JUNE 18, left on trip to Capel-Curig, Bangor, Carnavon,
back to Capel-Curig
JUNE 27, nominal date for signing of report on nomenclature
written by Strickland
JULY 18, returned to London
JULY 19, AUGUST 7, and AUGUST 21, observed bees pollinating
flowers (see Cross and Self Fertilization)
AUGUST, Bell’s Reptiles, Zool. V (1) published
AUGUST 14, Emma Darwin moved to Down House
SEPTEMBER 14, Emma Darwin moved to Down House
Sept. 23, Mary Eleanor Darwin born
OCTOBER 14, began work on Volcanic Islands
OCTOBER 16, Mary Eleanor Darwin died

1843
Continued work on volcanoes and species
JANUARY, reply to Maclaren’s review of Reefs published
JANUARY 15, skimmed Adam Smith’s The Theory of Moral
Sentiments
MAY 3, read Kirby & Spence’s Entomology
MAY 16, read Paley’s Natural Theology
MAY 20, finished Carlyle’s Past and Present
JUNE 16, Hume’s History of England to Elizabeth
JULY 8–15, week at Maer and Shrewsbury
JULY 12, Josiah Wedgwood II died
JULY 26, began correspondence with George Waterhouse on
principles of classification
SEPTEMBER 7, J.D. Hooker returned from Antarctic expedition
SEPTEMBER 9, paper on double flowers in Gardeners’
Chronicle published
SEPTEMBER 14, finished first four volumes of Gibbon
SEPTEMBER 25, Henrietta Emma Darwin born
OCTOBER 18–29, trip to Shrewsbury
OCTOBER, Reptiles, Zoology 5(2) published, completing
zoology of the voyage
OCTOBER 12, to Shrewsbury for twelve days
DECEMBER 3 or 17, CD → G.R. Waterhouse on taxonomy,
including quinarianism

1844
JANUARY, paper on Sagitta published
JANUARY 5, Volcanic Islands finished, published in March
JANUARY 11, CD → J.D. Hooker, informing him of evolutionary views
JANUARY 31, attended Geological Society Council meeting
FEBRUARY 13, finished species essay
FEBRUARY 21, attended Geological Society Council meeting
MARCH 20, attended Geological Society Council meeting
APRIL 6, “Origin of Mould” published
APRIL 17, attended Geological Society Council meeting
APRIL 23–MAY 30, to Maer and Shrewsbury
JUNE 8, “Manures and steeping seeds” published
JULY 5, CD → Emma Darwin, giving instructions for possible
posthumous publication of species essay, which he
had just completed
JULY 5, read Owen’s lectures on invertebrates
JULY 17, to London with Emma
JULY 18, visited Kew Gardens with Emma
JULY 27, began South America
SEPTEMBER 14, “Variegated leaves,” “Salt” published
OCTOBER, paper on flatworms “Planariae” published
OCTOBER 1, finished Owen on Mylodon
OCTOBER 14, CD → Leonard Jenyns, informing him of evolutionary views
OCTOBER 18–29, trip to Shrewsbury
OCTOBER 20, finished Fothergill on philosophy of natural
history
NOVEMBER 20, read Robert Chambers’s (anonymous)
Vestiges, attended Geological Society Council meeting
DECEMBER 7–8, J.D. Hooker’s first visit to Down House
DECEMBER 18, attended Geological Society Council meeting
DECEMBER 30, J.D. Hooker → CD; remarks on Vestiges 1845

JANUARY 7, CD → J.D. Hooker; gives negative reaction to Vestiges
JANUARY 8, attended Geological Society Council meeting
JANUARY 27, CD → J.D. Hooker, saying Forbes has forestalled CD on alpine plants
FEBRUARY 5, attended Geological Society Council meeting
MARCH 12, attended Geological Society Council meeting
MARCH 31, CD → J.D. Hooker; says he has just finished Isidore Geoffroy Saint-Hilaire on animal monstrosities
SPRING, joined Philosophical Club of Royal Society
APRIL 2, attended Geological Society Council meeting
APRIL 24, completed first draft of South America
APRIL 25, began second edition of Journal of Researches; preface signed in June
APRIL 29–MAY 10, to Shrewsbury
MAY 28, attended Geological Society Council meeting
JUNE 4, “Dust” paper read to Geological Society
JUNE 11, attended Geological Society Council meeting
JUNE 8, read A.P. de Candolle’s article on plant biogeography
JULY 2, attended Geological Society Council meeting
JULY 9, George Howard Darwin born
AUGUST 5, finished Lyell’s Travels in North America
AUGUST 25, Erasmus Alvey Darwin arrived for a week’s visit
AUGUST 26, completed 2nd edition of Journal of Researches; preface signed in June
SEPTEMBER 5 or 12, Wednesday, CD → J.D. Hooker, saying that he will finish geology, do a little zoology, and then proceed to species work
SEPTEMBER 15–OCTOBER 26, to Shrewsbury and elsewhere
OCTOBER 29, resumed work on South America
NOVEMBER 5 or 12, Wednesday, CD → J.D. Hooker; Hooker left on January 23, probably taking a copy of 1844 “Essay” with him
DECEMBER 2, attended Geological Society Council meeting
DECEMBER 15, finished Burton’s biography of Hume

1846

JANUARY 7, attended Geological Society Council meeting
FEBRUARY 4, attended Geological Society Council meeting
FEBRUARY 6, finished Bronn’s Geschichte der Natur vol. 2
FEBRUARY 20, attended Geological Society Council meeting
FEBRUARY 21–MARCH 3, trip to Shrewsbury
MARCH 13, CD → J.D. Hooker; says he just finished A. St. Hilaire’s lectures, praises Moquin-Tandon’s book on monstrosities
MARCH 20, read A. Saint Hilaire on botanical morphology
MARCH 25, read paper on geology of the Falklands to Geological Society; attended Council meeting
MARCH 31, Elizabeth Allen Wedgwood (CD’s mother in law) died
APRIL 10, CD → J.D. Hooker; praises Owen’s Archetype
APRIL 22, attended Geological Society Council meeting
APRIL 24, read Steenstrup on alternation of generations
MAY 9, read Moquin-Tandon on vegetable teratology, Owen’s British Fossil Mammalia
MAY 20, attended Geological Society Council meeting
JUNE 3, attended Geological Society Council meeting
JUNE 6, repeal of Corn Laws
JUNE 17, attended Geological Society Council meeting
JULY 31–AUGUST 9, trip to Shrewsbury
AUGUST, “Saliferous deposits” published
SEPTEMBER 9, departed with Emma for Southampton
SEPTEMBER 10–11, attended meeting of British Association for the Advancement of Science at Southampton
SEPTEMBER 12, to Portsmouth and Isle of Wight coast
SEPTEMBER 13, to Winchester
SEPTEMBER 14, to Netley Abbey & Southampton
SEPTEMBER 17, returned home
SEPTEMBER 22, to Knole Park
OCTOBER, two trips to London
OCTOBER 1, finished proofs of South America
OCTOBER 1, began paper on “Arthrobalanus”
OCTOBER 9, finished Playfair’s biography of Hutton
OCTOBER 10–12 ca., Sulivans and Hooker visited
OCTOBER 28, CD → FitzRoy, on dissecting Cryptophialus
NOVEMBER 18, attended Geological Society Council meeting
DECEMBER 2, attended Geological Society Council meeting
DECEMBER 15, finished Burton’s biography of Hume
DECEMBER 18, CD → John Gray; first record of plan to do barnacle monograph 1847

JANUARY, review of Waterhouse book on mammals published
JANUARY 2, worked on Conia
JANUARY 6, attended geological society council meeting
JANUARY 7, visited Owen at home, discussed osteology and archetypes
JANUARY 16, visit from Lyells and J.D. Hooker; Hooker left on January 23, probably taking a copy of 1844 “Essay” with him
JANUARY 30, read Milne-Edwards on crustacean biogeography
FEBRUARY, worked on Balanus
FEBRUARY 19–MARCH 5, trip to Shrewsbury
MARCH, worked on Acasta and Clisia (= Verruca); later this year on Tubicinella and Coronula
MARCH 4, J.D. Hooker → CD, on natural groups
MARCH 6, paper on salt published
MARCH 15, finished Owen’s lectures on fish
APRIL 7, reread Malthus on population
APRIL 18, CD → J.D. Hooker on having met Robert
OCTOBER 22–NOVEMBER 5, trip to Shrewsbury
DECEMBER 15, attended Geological Society Council meeting
NOVEMBER 18, CD
JUNE 9, attended Geological Society Council meeting
MAY 12, finished Owen’s *Pearly Nautilus*
NOVEMBER 19, attended Geological Society Council meeting
JUNE 22–30, attended British Association meeting at Oxford, met Milne-Edwards; some travel after meeting
JULY 1, returned to Down House
JULY 8, Elizabeth Darwin born
AUGUST 14, finished Flourens on animal intelligence
DECEMBER 18, began anatomy of pedunculated cirripede
JUNE 22, CD → Lyell; resists ice lake theory of Glen Roy parallel roads
SEPTEMBER 13, finished Sismondi on political economy
SEPTEMBER 20, CD → David Milne; staggered by ice lake theory
SEPTEMBER 24, finished Oken’s *Physiophilosophy*
OCTOBER 22–NOVEMBER 5, trip to Shrewsbury
NOVEMBER 1, finished first part of Goethe’s autobiography
NOVEMBER 10, finished vols. 3–5 of Pritchard on mankind
NOVEMBER 11, J.D. Hooker left for Himalaya expedition
NOVEMBER 17, attended Geological Society Council meeting
NOVEMBER 18, CD → Lyell; resists ice lake theory of Glen Roy parallel roads
NOVEMBER 20, CD → David Milne; staggered by ice lake theory
NOVEMBER 26, finished Pictet’s book on paleontology
DECEMBER 1, attended Geological Society Council meeting
DECEMBER 7, finished Roget’s *Bridgewater Treatise*
NOVEMBER 1, ca., began systematic work on pedunculated Cirripedes
NOVEMBER 13, Robert Waring Darwin died at 8:30 A.M.
NOVEMBER 17–26, trip to Shrewsbury
NOVEMBER 18, attended his father’s funeral
DECEMBER 25, finished *Mémoires* of the Paris museum through Volume IX

1849
JANUARY 13, finished work on *Anatifera*
JANUARY 31, attended Geological Society Council meeting
FEBRUARY 15, Strickland → CD; fine letter on types
MARCH 8, departed for Malvern
MARCH 10 to JUNE 30, at Malvern for hydropathic treatment
Late MARCH, read J.D. Hooker’s Galapagos papers
JUNE 30, finished Lyell’s book on second visit to America
JULY 15, resumed systematic work on pedunculated cirripedes
JULY 20, read Agassiz & Gould’s *Principles of Zoology*
AUGUST 12, CD → Dana; their first letter on cirripedes
SEPTEMBER 11–21, attended British Association meeting at Birmingham, where he made remarks on cirripedes reported in *Athenaeum*, met with Milne-Edwards
SEPTEMBER 21, first CD → Hancock; letter, remarks and *Athenaeum* paper mentioned
OCTOBER 15–18, Lyells visited
Late OCTOBER, read Lovén’s paper on *Alepas = Anelasma*
NOVEMBER 2, visited by William Darwin Fox
NOVEMBER 7, attended Geological Society Council meeting
NOVEMBER 12, read Sedgwick’s *Discourse on Study*
DECEMBER 4, CD → Lyell; had just read Dana on reefs
DECEMBER 7, CD → Lyell, commenting on Dana’s criticisms
DECEMBER 10, finished Dana on geology of U.S. Exploring Expedition

1850
JANUARY 15, Leonard Darwin born
FEBRUARY 6, attended Geological Society Council meeting
FEBRUARY 24, CD → Dana; oviduct diagnostic of cirripedes
MARCH 23, finished Owen’s *Parthenogenesis* and *The Nature of Limbs*
APRIL 10, attended Geological Society Council meeting
APRIL 28, began systematic work on sessile cirripedes
APRIL 18–30, visit by Lyells
MAY 20, CD → J.S.S. Steenstrup, expressing interest in his paper on hermaphroditism, as yet unread
JUNE 5, paper on fossil Lepadidae read to Geological Society
JUNE 11–18, to Malvern
JUNE 13, CD → J.D. Hooker, on variation of cirripedes
AUGUST 10–16, to Leith Hill Place (Wedgwood home)
OCTOBER 14–22, trip to Hartfield and Ramsgate
DECEMBER 30, finished siding Balanidae and Pachylysma

1851
FEBRUARY 22, Charles Lyell visited
MARCH 24, took Annie with Henrietta to Malvern
MARCH 28–MARCH 31, back in London
MARCH 30, Darwins visited Allens in London; Carlyle there
MARCH 31, returned to Down
APRIL 5, finished Lyell's *Manual of Geology*
APRIL 16, departed for Malvern
APRIL 17, arrived at Malvern
APRIL 23, Anne Elizabeth Darwin died at Malvern
MAY 13, Horace Darwin born
JUNE, *Fossil Lepadidae* published
JULY 17, CD → Huxley, thanking him for note and discussing views of Huxley on individuality and zooids
JULY 30–AUGUST 10, visit to London; attended Great Exhibition, which impressed him favorably
AUGUST 18, began proofs of *Living Lepadidae*
OCTOBER 22–25, Charles Lyell visited
NOVEMBER 12, finished proofs of *Living Lepadidae*, began work on sessile cirripedes with genera *Conia* & *Elminius*
DECEMBER 17, attended meeting of Geological Society Club
DECEMBER 30, finished *Balanus* and *Pachylysma*

1852
Worked on sessile cirripedes: *Acasta, Coronula, Platylepas, Tubicinella, Xenobalanus, Chelonobia, Chthamalus, Chamaesipho, Octomeris, Cataphragmus, Balanus*, and *Verruca*
JANUARY 19, note on ropes for wells published
JANUARY 29, to London
FEBRUARY 15, CD → Dana; sends two *Lepadidae* volumes; more letters follow discussing their disagreements on limbs
FEBRUARY 24, finished Humboldt's *Aspects of Nature*
MARCH 24, visited William Darwin at Rugby School, then to Shrewsbury, returning to Down on April 1
MAY 8, CD → Dana, on homologies of larvae
JUNE, *Living Lepadidae* published (nominally 1851)
JUNE 2–5, to London
JUNE 10, finished Gould on Australian birds
JUNE 17, CD → Richard Owen, expressing thanks for praise of barnacle anatomy
AUGUST 5–9, Lyells visited
SEPTEMBER 11–16, to Leith Hill
NOVEMBER 8–12, to London
NOVEMBER 26, finished Milne-Edwards' *Zoologie*
DECEMBER 1, Napoleon III declared Emperor of France
DECEMBER 25, CD → Albany Hancock, has not yet examined *Alcippe*

1853
Completed sessile cirripedes: *Verruca, Alcippe, Cryptophialus*
FEBRUARY 1–3, to London to visit brother and sisters
FEBRUARY 10, CD → Albany Hancock; has found *Alcippe* male, hadn't dreamed it was a cirripede
MARCH, probably found *Cryptophialus* males
MARCH 30, CD → Albany Hancock: hard to put *Cryptophialus* and *Alcippe* in the same order
APRIL 4–7, to London
APRIL 6, met Huxley, at meeting of Geological Society
APRIL 20, finished Agassiz on fossil fishes of England
APRIL 23, CD → Huxley on notion of archetype
APRIL 30, finished Baird on Entomostraca
MAY 7, attended Royal Society party in London
JUNE 1, attended meeting of Geological Society
JULY 14–AUGUST 4, Darwin family trip to Eastbourne
AUGUST 13–17, visit to Chobham Camp
SEPTEMBER, read first 4 volumes of *Microscopic Journal*
SEPTEMBER 20, read Dana's monograph on Crustacea
SEPTEMBER 25, CD → J.D. Hooker on effect of species concepts on his barnacle researches
NOVEMBER 30, awarded Royal Society medal, attended meeting
DECEMBER 6, CD → Dana on homologies of cirripede limbs
DECEMBER 10, visit to London

1854
This year was very important for morphological principles
FEBRUARY 3–JULY 15, proofs of *Living Balanidae*
FEBRUARY 6, finished Wallace on Amazon, Schleiden on plants
FEBRUARY 23, Thursday, to London with Emma, Henrietta and Leonard
FEBRUARY 25, Saturday, returned home
FEBRUARY 29, finished first volume of Hooker's *Himalayan Journal*
MARCH 7, finished second volume of Hooker's *Himalayan Journal*
MARCH 7, elected Fellow of the Linnean Society of London
MARCH 11, finished Comte on positive philosophy
MARCH 13–17, to Hartfield because son Francis was ill
APRIL 23, CD → Huxley, commenting on paper about morphology of mollusks paper and theoretical principles
APRIL 24, elected to Philosophical Club of Royal Society
MAY 1, Monday, to London with Emma
MAY 2, attended meeting of Linnean Society
MAY 3, Wednesday, returned home
GHISELIN: DARWIN — A READER’S GUIDE

MARY 13, Saturday, dined at the Lubbocks’
MARY 15, finished Eaton on pigeons
MARY 20, finished Whewell’s *Plurality of Worlds*
MARY 24, to London
MARY 25, attended meeting of Philosophical Club
JUNE 21–23, to London
JUNE 22, attended meeting of Philosophical Club
JUNE 24, J.D. Hooker → CD on highness and lowness
JUNE 27, CD → J.D. Hooker on highness and lowness
JUNE 29, J.D. Hooker → CD on highness and lowness
JULY 13–15, to Hartfield
SEPTEMBER, completed proofs of *Fossil Balanidae*
SEPTEMBER 2, CD → Huxley; says 2nd part of *Cirripedia* out, discusses Huxley’s *Vestiges* review and Owen’s probable response; only cryptic assertion of evolutionary leanings
SEPTEMBER 8, CD → Huxley on ovigerous fraena of barnacles
SEPTEMBER 9, began sorting notes for species book
SEPTEMBER 13, CD → Huxley on cement glands of barnacles
SEPTEMBER 25, finished Westwood on classification of insects
OCTOBER 9–14, trip to Leith Hill Place (Wedgwood home)
OCTOBER 23, to London with Emma
OCTOBER 26, Lyells and Hookers at dinner party; Hooker astonished them with trimorphic *Catasetum*
OCTOBER 28, Saturday, Lyells departed
NOVEMBER 2–4, to London
NOVEMBER 2, elected to Council of Royal Society of London
NOVEMBER 30–DECEMBER 1, to London: attended meeting of Royal Society on the 30th-
DECEMBER 1, breakfast at home of Sir Robert Inglis; present were, among others: FitzRoy, Owen, Herschel, and Robert Brown

1855

JANUARY 18, took a house in London for a month
JANUARY 25, attended meetings of Council of the Royal Society and Philosophical Club
JANUARY 29, party at Lyells’
FEBRUARY 15, returned home
FEBRUARY 20, CD → Huxley, noting absence of anus in Brachiopoda has analogue in the cirripede *Alcippe*
MARCH 2, Wollaston → CD, responding to queries about his book on insects of Madeira
MARCH 2, attended Linnean Society meeting, met P.H. Gosse
MARCH 7, CD → J.D. Hooker; critique of Huxley, Wollaston; proposes explanation for apterous insects on islands
MARCH 8, CD → Huxley on his exposition of mollusk anatomy; also barnacle cement glands and reasons for rank of Cirripedia
MARCH 20–24, in London
MARCH 22, attended meeting of Council of Royal Society
MARCH 30, began experiments on effects of salt on seeds
APRIL 11, wrote letter to Editor of *Gardener’s Chronicle* requesting advice on effects of seawater on seeds (published April 14)
APRIL 13, CD → J.D. Hooker on plant experiments
APRIL 20, Darwins attending opening ceremony of Crystal Palace at Sydenham; socialized with Owen and his wife there
APRIL 21, attended meeting of Council of Royal Society
APRIL 23, attended meeting of Council of Royal Society
APRIL 25, CD → A. Gray; first letter, had met at Kew; asks for help with plant distribution
APRIL 30–MAY 5, to London; saw Yarrell
MAY, *Fossil Balanidae* published (nominally 1854)
MAY 21, completed paper on effects of seawater on seeds
MAY 22, A. Gray → CD; first letter
MAY 26, paper on effects of seawater on seeds published
MAY 28, finished Lyell’s *Elements of Geology*, 5th ed.
MAY 29, finished Carpenter on comparative physiology
JUNE, finished rereading Gaertner (begun April or earlier)
SUMMER, experiments on hybridization carried out
JUNE 5, CD → J.D. Hooker; describes plant competition experiments and more work on effects of salt on seeds
JUNE 10, CD → J.D. Hooker; asks for sensitive plant
JUNE 28, attended meeting of Council of Royal Society
JULY 2, CD → Henslow on *Lychnis*; request for seeds, notes experiments on salting of seeds
JULY 9–12, studied insects and nectaries of vetch
JULY 16–19, Horners visited
JULY 21, paper on nectaries of vetch published
JULY 21, began experiments on vitality of seeds
AUGUST 7–9, to London
AUGUST 7, dinner at Erasmus Alvey Darwin’s home: J.S. Henslow and J.D. Hooker among the guests
AUGUST 28–30, attended Anerley poultry show
AUGUST 31, CD → Tegetmeier, the first of many letters, on poultry
SEPTEMBER, read Tegetmeier on poultry, evidently before publication
SEPTEMBER 10–22, trip to attend British Association meeting, Glasgow, with visit to Shrewsbury on return
OCTOBER 25, attended meeting of Council of Royal Society and probably also that of Philosophical Club
OCTOBER 30, finished Quatrefage’s *Souvenirs*
NOVEMBER 3, paper on shell rain published
NOVEMBER 8, attended meeting of Council of Royal Society
NOVEMBER 13, finished paper on vitality of seeds
NOVEMBER 17, paper on vitality of seeds published
NOVEMBER 21, finished note on salt water and germination
NOVEMBER 24, note on salt water and germination published
NOVEMBER 29, attended meeting of Columbian Society
NOVEMBER 30, attended meeting of Council of Royal Society
DECEMBER 20, attended meetings of Council of Royal
Society and Philosophical Club
December 26, finished Isidore Geoffroy Saint-Hilaire’s biography of Étienne Geoffroy Saint-Hilaire
December 29, note on seedling fruit trees published

1856

Much correspondence on biogeography, research on domesticated animals, experimental plant ecology in summer
January 8, attended meeting of Philosperisteron Society
January 10, finished Baden Powell’s Unity of Worlds
January 31, attended meeting of Council of Royal Society
March 8, read 2nd ed. of Owen’s lectures on invertebrates
March 10–14, trip to London mainly for library work
March 13, attended meeting of Council of Royal Society
March 14, at British Museum to arrange for translation of Chinese materials on domesticated animals; visited Weir
March 30, Treaty of Paris ended Crimean War
April 13–16, Lyell visited Darwin, asked about Wallace’s paper of 1855; CD told Lyell about natural selection; Lyell urged publication (perhaps somewhat later)
April 17, attended meeting of Council of Royal Society
April 22–28, J.D. Hooker and wife visited
April 25–28, Wollaston visited
April 26–28, Huxleys visited
April 26, John Lubbock dined
May 2, finished Third Edition of Prichard on man
May 2, Woodward → CD on fossil record
May 5–8, to London
May 6, read paper on effect of salt water on seeds to Linnean Society of London
May 8, finished Linnaeus’s Fauna Suecica
May 8, attended meeting of Council of Royal Society
May 14, began work on Natural Selection manuscript
May 29, to London
May 30, attended meeting of Council of Royal Society
June 5, had finished Woodward’s Manual of the Mollusca
June 12, attended meeting of Council of Royal Society
June 15, finished Watson on plant geography
June 18–21, trip to London
June 18, dinner at home of Philip Henry Stanhope
June 19, attended meetings of Council of Royal Society and of Philosophical Club
June 25, CD → Lyell on reasons for rejecting land bridges in biogeography
July 13, CD → J.D. Hooker; sent part of Natural Selection book draft dealing with high latitude plant biogeography
July 19, CD → J.D. Hooker on separation of the sexes in trees
July 20, CD → A. Gray: reveals evolutionary views
July 29, attended Anerly poultry show
August 14, to London
August 25, to London
September 13–19, to Leith Hill (Wedgewood home)
October, abstracted material from Koelreuter book on plant sexuality (effects of crossing)
October 13, finished chapters 2 and 11 of Natural Selection (on variation under domestication and biogeography)
October 15–19, trip to London
October 16, attended meeting of Philosophical Club
November 4, CD → J.D. Hooker; he is attending to bird dissemination
November 6, Sarah Wedgwood died at Down House
November 9, J.D. Hooker → CD, commenting on manuscript on geographical distribution
November 13, attended meeting of Philosophical Club
November 23, CD → J.D. Hooker, responding to comments on Natural Selection manuscript
December 16, finished chapter 3 of Natural Selection on possibility that all organisms cross
December 6, Charles Waring Darwin (last child) born
December 6, note on cross breeding of legumes published

1857

Botanical arithmetic; experiments on plant ecology
January 13–16, to London
January 15, attended meeting of Philosophical Club and lecture at Royal Society
January 26, finished chapter 4 of Natural Selection on variation in nature
February 23, Captain and Mrs. FitzRoy came to lunch
March 3, finished chapter 5 of Natural Selection on struggle for existence
March 4–7, to London
March 5, attended meeting of Philosophical Club
March 7, note on hybrid dianthus published
No earlier than March 15, CD to Asa Gray explaining his theory of separation of sexes in trees
March 31, finished 6th of Natural Selection on natural selection (includes principle of divergence but this part may have been added in April)
End of March or early April, Natural Selection chapter 7 on laws of variation, and varieties and species compared; part sent to Huxley on July 5, returned by him on July 7
April 12, Wollaston → CD, responding to letter of previous day, asking about sexual combat and lack of wings in insects
April 14, probably, finished addendum on large and small genera to chapter 4 of Natural Selection
April 22–May 6, at Moor Park hydropathic establishment
April 27, CD to P.H. Gosse, asking about sexual combat in Crustacea
May 1, CD → Wallace on letter of October 10; comments on Wallace’s paper of 1855 and says he has a species theory but does not expect to finish book for two years
May 9, CD → Asa Gray on botanical arithmetic
June 13, Note on mouse-coloured breed of ponies published
June 16–29, at Moor Park hydropathic establishment
June 18, CD → Asa Gray, discussing extinction and notion...
that crossing eliminates variation
JUNE 27, to Selbourne (home of Gilbert White)
JULY 3, took oath as Justice of the Peace
JULY 5, CD → Huxley, asking about Brullé’s rule
JULY 7, Huxley → CD on Brullé’s rule
JULY 7, Asa Gray → CD on crossing and distribution
JULY 14, CD → Lubbock, thanking him for pointing out
error in botanical arithmetic
JULY 20, CD → Asa Gray; first openly evolutionary letter
JULY 25, note on deep wells published
AUGUST 10, attended Crystal Palace poultry show
AUGUST 13–14, J.S. Henslow visited
AUGUST 22, CD → J.D. Hooker; mentions principle of
divergence of character, but has not yet explained it
SEPTEMBER and OCTOBER, correspondence with Huxley
about genealogical classification, morphological princi-
ple
SEPTEMBER 5, CD → Asa Gray, explaining natural selection
SEPTEMBER 27, Wallace → CD, responding to earlier letter
SEPTEMBER 29, finished chapters 7 and 8 of Natural
Selection (on laws of variation, difficulties with transi-
tional forms)
OCTOBER 18, note on fertilization of beans signed
OCTOBER 24, note on fertilization of beans published
OCTOBER 31, J.D. Hooker visited
NOVEMBER 5–12, at Moor Park hydropathic establishment
NOVEMBER 29, CD → Asa Gray, clarifying evolutionary
concepts
DECEMBER 22, CD → Wallace on letter of September 27,
1855 paper by Wallace, and plans for book
DECEMBER 29, finished chapter 9 of Natural Selection (on
hybridism)

1858
Early in year much correspondence on cells of bees
FEBRUARY 16–20, to London
FEBRUARY 18, attended meeting of Philosophical Club; J.D.
Hooker also was present
FEBRUARY 19, attended party at H. Wedgwood’s; the
Hookers and Buckle (considered a bore by Darwin and
Hooker) also were present
FEBRUARY 28, began proofs ofOrigin
MARCH 3, read Huxley’s paper on Aphis
MARCH 9, finished chapter 10 of Natural Selection (on
instinct)
APRIL 14, section on divergence of character
APRIL 20–May 14, to Moor Park hydropathic establishment
APRIL 27, day’s visit from W.D. Fox
MAY 15, to London
MAY 20, attended meeting of Philosophical Club, met guest
speaker C. Brown-Séquard.
JUNE 14, worked on pigeons
JUNE 17, Huxley’s Croonian Lecture against the vertebral
theory of the skull delivered (Richard Owen, whose
views were criticized, was in the chair)
JUNE 18, arrival of manuscript by Wallace, CD → Lyell
JUNE 28, Charles Waring Darwin (infant son) died
JULY 1, joint paper by Darwin and Wallace read to Linnean
Society
JULY 9, to Hartfield for holiday
JULY 17, arrived at Isle of Wight; to Sandown July 17; to
Shanklin July 27; returned home August 13
JULY 18, Marianne Darwin Parker (sister of CD) died
JULY 20, began to write “Abstract” that became Origin, con-
tinued to August 12, resumed September 16
AUGUST 28–31, J.D. Hooker and W.H. Harvey visited
SEPTEMBER 8, CD → Togetemeier; “done with my pigeons”
SEPTEMBER 14, Togetemeier visited
OCTOBER 6, Wallace → J.D. Hooker, expressing approval of
joint publication
OCTOBER 8, began Origin section on laws of variation
OCTOBER 19, to London; long meeting with Hugh Falconer
OCTOBER 23–November 13, wrote Origin section on diffi-
culties of theory
OCTOBER 25–November 1, at Moor Park, hydropathic
establishment
NOVEMBER 12, finished Yarrell on British birds
NOVEMBER 13, began Origin section on instinct
NOVEMBER 13, paper on agency of bees published in The
Gardeners’ Chronicle
NOVEMBER 25, CD → Herbert Spencer on gift of Essays
NOVEMBER 25–27, G.S. Henslow visited
NOVEMBER 27, “Memorial” on Natural History Collections
published (signed November 18)
NOVEMBER 30, began Origin section on hybridism
DECEMBER 11, began Origin section on geological succes-
sion
DECEMBER 14–16, trip to London
DECEMBER 16, attended meeting of Philosophical Club
DECEMBER 17, Huxley → CD on homologies of air bladder
DECEMBER 24, CD → J.D. Hooker on faunal invasions,
competition, living fossils, and progress

1859
JANUARY 15, began Origin chapter on geographical distri-
bution
FEBRUARY 5–19, to Moor Park hydropathic establishment
FEBRUARY 18, awarded Wollaston Medal by Geological
Society
FEBRUARY 28, began Origin chapter on classification
MARCH 2, CD → J.D. Hooker; Origin chapter on geology
and distribution finished, asks about embryology
MARCH 15, CD → J.D. Hooker; thanks for help with chap-
ter on geographical distribution
MARCH 19, finished last chapter of Origin
MARCH 24, CD → W.D. Fox; is revising manuscript
APRIL 6, CD → Wallace on discovery of natural selection
APRIL 21, J.D. Hooker visited
MAY 10, sent first six chapters of Origin to printers
MAY 18, CD → J.D. Hooker on ill health
MAY 21–28, to Moor Park hydropathic establishment
MAY 25, began proofs of Origin
JUNE 3, Huxley lecture on “persistent types”
JUNE 14, CD → Murray, apologizes for many corrections
JUNE 21, J.D. Hooker read paper on plant migration to
Linnean Society, endorsing Darwin’s views
JULY 19–26, to Moor Park hydropathic establishment
AUGUST 20–23, to Leith Hill Place (Wedgwood home)
SEPTEMBER 1, CD → J.D. Hooker, saying all but two chapters
revised
September 10, finished initial proofs
OCTOBER 1, last revised proofs corrected
OCTOBER 3–DECEMBER 7, at Ilkley hydropathic establish-
ment
OCTOBER 3, Lyell → CD, commenting on proofs of Origin
OCTOBER 11, CD → Lyell, responding to comments
NOVEMBER 22, Origin sold out at publishers’ trade sale
NOVEMBER 23, Huxley → CD, high praise for Origin
NOVEMBER 24, Origin published
NOVEMBER 25, Sedgwick → CD, unkind criticisms of
Origin
DECEMBER, got 2nd Origin through press
DECEMBER 1, pseudonymous letter from FitzRoy to Times
DECEMBER 7, left Ilkley for brief stay in London
DECEMBER 9, returned to Down
DECEMBER 13, CD → Huxley on Variation MS
DECEMBER 26, Huxley reviews Origin in Times, earliest
possible date for 2nd ed.

1860

All through this year many reviews and much controversy
JANUARY 3, had finished Hooker on Australian flora
JANUARY 7, 2nd edition of Origin published
JANUARY 9, began work on Variation
JANUARY 21, reply to Westwood in Gardeners’ Chronicle
JANUARY 24–27, trip to London
JANUARY 26, attended meeting of Philosophical Club
FEBRUARY 10, attended Huxley’s lecture on natural and arti-
ficial selection at Royal Institution in London
FEBRUARY 14–16, J.S. Henslow visited
FEBRUARY 27–28, trip to London
MARCH, A. Gray’s review of Origin published in American
Journal of Science and Arts
MARCH 5–6, trip to London with Henrietta and Leonard
Darwin
MARCH 9–12, Charles Lyell and wife visited
MARCH 24, Sedgwick’s review of Origin published in The
Spectator
MARCH 24, began introduction to Variation
MARCH 27, elected corresponding member, Philadelphia
Academy of Sciences
MARCH 28, trip to London
APRIL, Huxley review of Origin in Westminster Review
APRIL, Owen review of Origin in Edinburgh Review
APRIL 5, J.D. Hooker visited
APRIL 7, Patrick Matthew claimed priority for natural selec-
tion in Gardeners’ Chronicle
APRIL 7, Thomas Henry Huxley and Mrs. Huxley visited
APRIL 14, to London
APRIL 21, note replying to Matthew published
APRIL 21, to London
APRIL 23, attended meeting of Philosophical Club
MAY, Henrietta Darwin ill with typhoid fever, had relapses
until summer of following year
MAY 7, CD → J.D. Hooker on heterostyly; still thought of
it as a stage in separation of the sexes
MAY 22, CD → Asa Gray on theological aspects
MAY 22, first American edition of Origin published
JUNE 9, note on orchids published in Gardeners’ Chronicle
JUNE 10, finished second chapter of Variation, on pigeons
JUNE 28, to Sudbrook Park
JUNE 30, Oxford, Wilberforce debate with Hooker and
Huxley at British Association meeting
JUNE 30, note asking about moths sucking flowers pub-
lished
SUMMER 1860, began work on Drosera, worked diligently
on it till end of September
JULY, Wilberforce review of Origin in Quarterly Review
JULY 7, left Sudbrook Park, visited J.D. Hooker at Kew,
returned home
JULY 10–AUGUST 2, trip to Hartfield and Eastbourne,
worked on insectivorous plants
JULY 26, Henry Holland visited
AUGUST 11, resumed work on Variation
AUGUST 21, to London, visited Hugh Falconer
SUMMER AND FALL, experiments refuted hypothesis that
plants sexes are becoming separated in dimorphic
Primula; began further experiments
SEPTEMBER 22–NOVEMBER 10, trip to Eastbourne
SEPTEMBER 28, CD → Lyell; mentions Krohn on cirripedes
OCTOBER 29, Henry Holland visited
NOVEMBER 22, CD → Huxley; has to prepare 3rd Origin
NOVEMBER 26, CD → Asa Gray on design on installment
plan
DECEMBER 15, Huxley visited
DECEMBER 24, Wallace → H.W. Bates, praising the Origin

1861

Worked on Variation Chapter 3 to end of March
JANUARY 3, CD → T.H. Huxley on Huxley’s article on the
brain
JANUARY 5, note on achenia of Pumilio published
JANUARY 28, took son George to London to have all his
teeth removed
JANUARY 29, returned
FEBRUARY 9, note on fertilisation of orchids published
FEBRUARY 21, trip to London where he discussed Drosera
experiments at meeting of Philosophical Club
MARCH 9, Mrs. Huxley and children arrived for two week
visit, following death of Noel Huxley; T.H.H. joined
them briefly on March 10 and 17
MARCH 10, completed chapter II of Variation
MARCH 17, W.B. Carpenter visited
MARCH 20, finished chapter III of Variation
MARCH 20, began chapter IV of *Variation*
MARCH 26, CD → H.W. Bates on Amazon fauna paper
APRIL, 1861, 3rd *Origin* published (with *Historical Sketch*)
APRIL 16–20, trip to London; attended meeting of Linnean Society, visited Robert Chambers
APRIL 21, Fort Sumter attacked: American Civil War begins
APRIL 23, CD → Herbert Spencer on Spencer’s article about population, Darwin’s mode of argument
APRIL 25, CD → J.L.A. de Quatrefages de Bréau, commenting on his *Unité de l’Espèce Humaine* and on Darwin’s predecessors
APRIL 26, CD → T. Davidson, suggesting work on fossil brachiopod evolution
MAY 16, finished fowls
MAY 16, R.E. Grant → CD; dedicates book to Darwin
MAY 16, death of G.S. Henslow
MAY 23, Henslow’s funeral; Darwin was upset and unable to attend
MAY 23, CD → J.F.W. Herschel; discusses teleology
MAY 28, note on fertilization of *Leschenaultia* published
May 30, wrote biographical sketch of Henslow
MAY 31, finished ducks
JUNE, examined rabbits at London zoo
JUNE 15, note on fertilization of vincas published
JUNE 18, note on cause of variation of flowers published
JULY 1–AUGUST 27, to Torquay for holiday, orchid work
JULY 11, CD → F.J. Wedgwood on philosopy
JULY 13, CD → J.D. Hooker on homologies of orchids and review of *Origin* by W.H. Harvey
AUGUST 2, CD → Lyell on teleology of Gray and Herschel
SEPTEMBER 6, CD → Lyell; “Eheu” letter conceding Glen Roy on basis of manuscript by T.F. Jamieson
SEPTEMBER 14, note on vincas published
SEPTEMBER 14, note on fertilization of orchids published
SEPTEMBER 21, CD → John Murray, comparing orchid book to a Bridgewater Treatise
SEPTEMBER 24, CD → J.D. Hooker; says Murray will publish orchid book
OCTOBER 13, T.H. Huxley and John Lubbock called
OCTOBER 22, CD → J.D. Hooker on orchid homologies
OCTOBER 20–23, to London
NOVEMBER 21, visited British Museum
NOVEMBER 21, read paper on dimorphic *Primula* to Linnean Society
DECEMBER 3, CD → H.W. Bates, commenting on mimetic butterfly work; says he will advise Bates on book manuscript
DECEMBER 10–13, G.B. Sowerby Jr. at Down House to prepare illustrations

1862

JANUARY to end of MARCH, much illness in Darwin household due to influenza
JANUARY 22, had finished Lecoq on botanical geography
FEBRUARY 1, visited by John Lubbock
FEBRUARY 15, had lunch at Lubbock’s; J.D. Hooker and George Busk were also there
FEBRUARY 17, attended court as Justice of the Peace
FEBRUARY 19, to London, visited dentist
MARCH 18, CD → J.D. Hooker on Huxley’s saltation views
MARCH 30, Lubbock and J.D. Hooker visited
APRIL 1, to London
APRIL 1, Wallace arrived in London
APRIL 3, read paper on *Catasetum* to Linnean Society
APRIL 4, Friday, returned from London
APRIL 6, Sunday, visited by Lubbock, Busk, and Huxley
APRIL 17, J.D. Hooker arrived with young son William
APRIL 18, Henry Walter Bates arrived
APRIL 21, Hooker and Bates departed
APRIL 28, finished work on *Orchids*
MAY 6–9, trip to London; called on H. Falconer and Lyell, perhaps also saw Wallace
MAY 8, attended London International Exposition
MAY 9, met with Hugh Falconer, returned home
MAY 14, CD → J.D. Hooker; gives adaptiveness of orchid structure
MAY 15–22, visited Wedgewoods at Leith Hill Place, their home in Surrey
MAY 15, *Orchids* published
MAY 31, French translation of *Origin* published
SUMMER, much research on plant reproduction; visit from Wallace in June or July has not been dated
JUNE 12, Leonard Darwin sent home from school with scarlet fever; his illness caused grave concern for several weeks
JUNE 10, note on bees published in *Journal of Horticulture*
JUNE 18, note on bees sent to *Bienen Zeitung*
JULY 23, CD → A. Gray on *Orchids* being a “flank movement”
JULY 28, began work on (trimorphic) *Lythrum salicaria*
AUGUST 12, to Southampton; delayed there because Leonard Darwin had relapse of scarlet fever and Emma Darwin contracted the disease
SEPTEMBER 1, Monday, to Bournemouth, worked on *Drosera*
SEPTEMBER 29, to London, stayed with his brother
SEPTEMBER 30, Monday, called on Lyell; returned home
Fall and Winter worked on chapters VIII–XI of *Variation*
OCTOBER 4, A. Gray → CD, recommending Max Müller’s *Science of Language*
OCTOBER 7, resumed work on *Variation* chapters 9 and 10
OCTOBER 20, German translation of orchid book published
OCTOBER 21, *Beagle* companions Wickham, Sullivan and Mellersh to dinner at Down House; they left the next morning; CD became very ill
OCTOBER 31, Friday, Lubbock came to dinner
NOVEMBER 4, CD → J.D. Hooker on Max Müller’s *Science of Language*, just read
NOVEMBER 6, CD → A. Gray, commenting on Max Müller’s *Science of Language*
NOVEMBER 8, note on peas published in *Gardeners’ Chronicle*
November 20, CD → H.W. Bates, admiring his work on mimicry
November 25, note on strawberries published
December 2, note on variations published
December 7, CD → Huxley on his Lectures to Working Men
December 11, CD → John Scott; their first letter; comments on paper
December 19, pt. 3 of 2nd German ed. of Origin published
December 21, paper on Linum finished (begun December 11)
December 21, began draft of Variation chapter 11

1863
Mostly worked on Variation
January to April 1, three chapters on inheritance
January 4, finished Falconer’s paper on fossil elephants
January 23, began chapter on inheritance for Variation
February 4–14, trip to London, stayed with Erasmus Alvey Darwin
February 5, paper on Linum read to Linnean Society; CD was ill and could not attend
February 6, Lyell’s Antiquity of Man published
February 8, met with Huxley
February 11, met with J.D. Hooker and W.H. Gower at Kew
February 20, Huxley’s Man’s Place in Nature published
February 22, John Lubbock dined
February 26, finished Huxley’s Man’s Place in Nature
March to April. 1865 ill much of the time
March 6, CD → Lyell on Antiquity of Man
March 22, visit from J.D. Hooker
March 31, note on fertilization of orchids published
April 1, finished chapter on inheritance, began chapter on crossing and sterility
April 18, CD → H.W. Bates, praising first volume of Amazon travel book
April 18, paper on heterogeny finished
April 25, paper on heterogeny published
April 27–May 13, to Hartfield and (May 6) Leith Hill Place
May, June, wrote five chapters on crossing
May 25, Bentham address to the Linnean Society
June 16 to July 20, two chapters on selection
June 19, CD → Bentham; says principle of divergence was discovered after 15 years (1837 + 15 = 1852)
June 25, CD → J.D. Hooker; asks for help on climbing plants
July 2 and 3, observations on pollen in rain-water
July 18, letter on pollen published
August 15, note on plant in a singular place published
September, 6 months of illness began
September 2–October 13, Malvern hydroopathic establishment
October 14, returned home
November 23, CD → J.D. Hooker on Schleicher’s paper on language (not read yet)
December 3, paper on Pampean formation read

1864
Lyell created Baronet this year
Health poor from January to middle of April
March 3, CD → Ernst Haeckel, thanking him for Radiolaria
April to September worked on Lythrum & climbing plants
May 22, CD → J.D. Hooker, discussing Wallace’s new paper on man
May 28, finished paper on Lythrum, began Climbing Plants
May 28, CD, → Wallace, on his paper on man
May 29, Wallace → CD, praising Darwin’s originality
June 16, paper on Lythrum read to Linnean Society
July 9, Haeckel → CD, expressing Darwinism in Germany
July 17, John Lubbock visited
July 24, J.D. Hooker visited
August 10, Haeckel → CD on history of evolution
August 18, ca., John Scott visited
August 25–September 1, visit to Sarah Wedgwood in London
August 28, visited Lyell
September 13, finished paper on climbing plants (later revised in manuscript)
September 13, resumed work on Variation (on laws of variation)
October 15–17, Lyells visited
October 26, Haeckel → CD; praises Fritz Müller’s Für Darwin
November and December, health deteriorated
November 3, Council of Royal Society voted to award Copley Medal to CD
November 30, awarded Copley Medal of Royal Society
December 5, Duke of Argyle criticized Origin in address to the Royal Society of Edinburgh

1865
Worked on Variation to end of April, ill to December
January 8–18, corrected paper on climbing plants
January 18, sent Climbing Plants to be published
January 31, Hugh Falconer died
February 2, Climbing Plants abstract read to Linnean Society by Frederick Currey; Bentham and Hooker in the audience
March 4–6, J.D. Hooker spent the week end at Down house
April 9, CD → A. Gray; says he is correcting proofs of Climbing Plants
April 9, Appomattox Court House; end of U.S. Civil War
April 14, John Lubbock came to lunch
April 22, health became worse
April 30, FitzRoy committed suicide
May 27, CD → Huxley on pangenesis manuscript, soon received reply on predecessors
August 10, CD → F. Müller; 1st letter, full of praise for Für Darwin, just read; remarks on Rhizocephala
August 12, William Jackson Hooker died
1866

Darwin’s health was better this year
Continued work on Variation

January 14, Mr. & Mrs. Cresy visited
January 21, finished Wallace’s paper on Malayan Papilionidae, wrote letter with comments the next day
February 2, Catherine Darwin (sister of CD) died
February 26, CD → Wallace, asking for explanation of conspicuous coloration of caterpillars
February 27, CD → Wallace on his bird’s nest paper of July 1867; discussion continued at least through January 27, 1871

1867

Continues work on Variation
January 8, CD → Haeckel, commenting on his Generelle Morphologic; says it is too long for a translation
February, began “chapter” on man: it became Descent and Expression

January 30, Variation published
February 4, began work on Descent
February 8, Herbert Spencer → CD, explaining the difference between his homogeneous physiological units and Darwin’s heterogeneous gemmules (pangenesis)
February 10, Variation re-issued
February 11, letter of inquiry on sex ratio written
February 15, letter of inquiry on sex ratio published
February 27, CD → Wallace on sterility
March 1, Wallace → CD on sterility
March 3, to London, stayed with Erasmus Darwin for one week, then with Elizabeth Wedgwood for three weeks
March 31, Tuesday, dined with Miss Cobbe
April 1, Wednesday, returned home
April 6, CD → Wallace on selection being of individuals
April 15, CD → Wallace on his bird’s nest paper of July 1867; discussion continued at least through January 27, 1871
April 18, Saturday, Huxleys arrived for a visit
May 4, Huxleys departed
May 17, began work on sexual selection in birds
JULY 16, Thursday, to London on way to Isle of Wight
JULY 17, Friday, arrived in Freshwater
JULY 18, Saturday, called on Longfellow
JULY 19, Sunday, Tennyson called
AUGUST 10, Monday, saw Tennyson at Mrs. Crozier’s
AUGUST 20, Thursday, spent a night at Southampton
AUGUST 21, Friday, returned home
SEPTEMBER 12, entertained John Jenner Weir, the Wallaces
and Edward Blyth at Down House
SEPTEMBER 13, Hookers came to lunch
OCTOBER 24, Hookers, Grays and Tyndall visited
NOVEMBER 7-16, trip to London
NOVEMBER 14, called on Lyell and Lewes
DECEMBER 26, began to prepare 5th Origin

1869

Worked on 5th Origin and Descent
JANUARY 22, FEBRUARY 2, CD → Wallace on Fleeming Jenkin
JANUARY 29, Friday, Lyell’s visited
FEBRUARY 10, finished 5th Origin (46 days work)
FEBRUARY 11–24, trip to London; Emma returned the 26th
MARCH 22, CD → Wallace, commenting on Malay Archipelago
APRIL 9, Friday, fell from horse; recovered in ca. a week
APRIL 25, Sunday, Hooker and Tyndall visited
MAY 9, note on formation of mould by worms written
MAY 15, note on formation of mould by worms published
MAY 25, Tuesday, Huxleys arrived
JUNE 4, Friday, T.H. Huxley departed
JUNE 10–JULY 31, family trip to North Wales
JUNE 11, London to Shrewsbury
JUNE 12, to Caerdeon
JUNE 19, note on increase of elephant populations written
JUNE 25–30, very ill
JUNE 26, note on increase of elephant populations published
JULY 17, second note on elephant populations published
JULY 23, cover letter to editors of Annals and Magazine of Natural History for paper entitled “Notes on the Fertilization of Orchids” dated this day and addressed as from Down
JULY 30, spent night at Stafford.
JULY 31, returned home
AUGUST 7, 5th Origin published
AUGUST 28, Saturday, Asa Grays arrived at Down for a visit
SEPTEMBER 30, Thursday, Kowalevsky arrived
OCTOBER 1, Friday, Kowalevsky left
OCTOBER 20, reply to Delpino on pangenesis published
NOVEMBER 1–9, trip to London, stayed with Erasmus Darwin
NOVEMBER 13, note on winter-flowering plants written
NOVEMBER 18, note on winter-flowering plants published

1870

Continued work on Descent
JANUARY 7, Friday, Mr. Rouse arrived
JANUARY 8, Saturday, F. Galtons arrived
JANUARY 10, Monday, Galtons and Mr. Rouse departed
JANUARY 22, Saturday, Francis Darwin, Newton, Gunther, and Swinhoe arrived
JANUARY 23, Sunday, Hooker arrived
JANUARY 24, Monday, all departed
MARCH 5, Saturday, CD and Emma went to London, stayed with Erasmus Darwin
MARCH 12, Saturday, returned from London
MARCH 15, CD → E. Ray Lankester, expressing admiration for his book on comparative longevity; praises H. Spencer
MAY 20–24, trip to Cambridge with Emma
JUNE 12, CD → J.D. Hooker, strongly opposing design
JUNE 24–JULY 1, trip with Emma to London
JULY 13, infallibility of Pope proclaimed
JULY 19, Franco-Prussian War began
AUGUST 13–26, trip to Southampton with Emma, stayed with William Darwin
SEPTEMBER 10, Saturday, Huxleys & children visited
SEPTEMBER 26, Anton Dohrn visited
SEPTEMBER 27, read Rolleston’s British Association address
SEPTEMBER 29, Thursday, Huxleys to tea
OCTOBER 13, to Leith Hill Place to visit Wedgwoods
OCTOBER 20, Thursday, home
DECEMBER 8–14, trip to London, stayed with Erasmus Darwin

1871

JANUARY 15, final correction of proofs of Descent
JANUARY 17, began Expression
JANUARY 28, Saturday, Mr. Wilson, J.D. Hooker, Gunther, Swinhoe & W. Reade arrived; they departed on Monday
FEBRUARY 23–MARCH 2, with Erasmus Darwin in London
FEBRUARY 24, Descent published, reissued in March
MARCH, 13–16, Lyells visited
APRIL 1–5, to London to consult about photographs for Expression, stayed with Erasmus Darwin
APRIL 27, draft of manuscript of Expression finished
APRIL 27, note on pangenesis published in Nature
MAY 11–19, trip to Southampton
JUNE 18, began 6th Origin
JUNE 24–30, trip to London; stayed with Erasmus Darwin
JULY 14, CD → Chauncey Wright, praising his review of Mivart’s Genesis of Species, offering to reprint it
By mid-July, he was working on response to Mivart
JULY 28–AUGUST 24, holiday at Haredene, CD ill
AUGUST 25, Friday, returned home
AUGUST 31, Henrietta Darwin married R.B. Litchfield
SEPTEMBER 9, note on fertilisation of Leschenaultia published
SEPTEMBER 24, CD → E.B. Tylor, commenting on his book Primitive Culture, just finished
OCTOBER 15, Sunday, Kowalevsky visited
OCTOBER 29, finished 6th Origin
NOVEMBER and DECEMBER, proofs of Expression
NOVEMBER 3–10, visit to Wedgwoods at Leith Hill Place
DECEMBER 12–22, trip to London; stayed with Erasmus Darwin

1872
JANUARY 2, elected Honorary Member, California Academy of Sciences
JANUARY 10, finished proofs of 6th *Origin*
FEBRUARY 3, Saturday, J.D. Hooker arrived for a visit
FEBRUARY 13 or 16–MARCH 21, occupied a house in London
FEBRUARY, 19, ca., 6th *Origin* published
MARCH 6, Wednesday, lunch with Busks
MARCH 10, Sunday, saw Lyell
MARCH 24, Balfour visited
APRIL 5, 1st CD → A. Weismann, discussing *Einfluss der Isolirung auf die Artbildung*, views of Moritz Wagner
APRIL 19, Friday, Huxleys arrived
APRIL 20, Huxleys departed
JUNE 6, saw Tylor
JUNE 8–20, trip to Southampton
JULY 6, Saturday, Lyells arrived
JULY 8, Monday, Lyells departed
JULY 11, Memorial to Gladstone, intervening on behalf of J.D. Hooker, published in *Nature*
AUGUST 2, Gulick and others visited
AUGUST 13–21, trip to Leith Hill Place
AUGUST 22, last revision of *Expression*
AUGUST 23, began work on *Drosera*
AUGUST 28, Bastian on *Beginnings of Life*
AUGUST 29, Lady Lubbock and Professor Semper called
SEPTEMBER 4, Chauncey Wright visited and stayed at Down
SEPTEMBER 7–11, Hookers visited
SEPTEMBER 22, Sunday, Kowalesky arrived
OCTOBER 5–26, trip to Sevenoaks
OCTOBER 13, CD → Moritz Wagner on species formation
OCTOBER 22, worm observations at Knowle Park
OCTOBER 22, CD → A. Gray; thinks he has found nerves in the sensitive plant *Drosera*
NOVEMBER 26, *Expression* published
December 7, Saturday, Lyells arrived
DECEMBER 9, Monday, Lyells departed
DECEMBER 12–22, trip to London, stayed with Erasmus Darwin, ill
DECEMBER 27, Friday, F. Balfour arrived

1873
JANUARY, paper on climbing plants worked up as book
JANUARY 11, wrote letter on inherited instinct
JANUARY 18, letter on instinct published in *Spectator*
FEBRUARY 3, work on *Cross-Fertilisation*
MARCH 8, Saturday, Huxley visited
MARCH 13, paper on “Perception in the lower animals” published

MARCH 15–APRIL 10, stay in London, in rented house
APRIL 2, Francis Galton called
APRIL 3, paper on “Origin of certain instincts” published
APRIL 8, meeting about Huxley’s health problems
APRIL 19, Saturday, J.D. Hooker arrived
APRIL 23, CD → Huxley, informing him that 18 of his friends had contributed £2,100 to facilitate his recovery
MAY 28, responded to Galton’s questionnaire for *English Men of Science*
JUNE 4–12, trip to Leith Hill Place
JUNE 14, resumed work on *Drosera*
JULY 28, CD → J.D. Hooker on separation of sexes, new views of Bentham
AUGUST, experiments on bloom begun
AUGUST 5–9, visited T.H. and Euphemia Farrer at Abinger Hall
AUGUST 10–21, trip to Southampton
AUGUST 23, Huxley and General Stuchey visited
AUGUST 26, suffered what was probably a minor stroke
NOVEMBER 8–18, visit to Richard and Henrietta Litchfield in London
NOVEMBER 10, Lyell called
NOVEMBER 20, began 2nd *Descent*

1874
Mostly worked on *Insectivorous Plants*, 2nd *Descent*, 2nd *Reefs* (the latter two were published this year)
JANUARY 10–17, trip to London, stayed with Erasmus Darwin
JANUARY 12, Monday, fell down stairs
JANUARY 16, Friday, attended a séance at Erasmus Darwin’s house, but left early. Twenty were present, including G. H. Lewes, George Eliot, T.H. Huxley and George Darwin
FEBRUARY 20, entertained Litchfields and Frank Balfour
MARCH 7, CD → Anton Dohrn, contributing £120 for support of the Naples Zoological Station
APRIL 1, began *Insectivorous Plants*
APRIL 6, note on fertilisation of Fumariaceae written
APRIL 11, Saturday, Dr. Klein arrived
APRIL 12, Sunday, Dr. Klein departed
APRIL 16, note on fertilisation of Fumariaceae published
APRIL 18, note on flowers of primrose written
APRIL 21–29, trip to London, stayed with Henrietta and Richard Litchfield
APRIL 23, note on flowers of primrose published
MAY 7, second note on flowers of primrose written
MAY 13–16, Lyells visited
MAY 14, second note on flowers of primrose published
Summer, worked on *Utricularia*
JUNE 3–JULY 5, trip to Abinger Hall
JUNE 5, CD → A. Gray on teleology
JULY 4, quotation on *Pinguicula* published
JULY 11, Saturday, visited by F. Balfour, J.D. Hooker, S. Forster
JULY 23, Thursday, Francis Darwin and Amy Ruck married
JULY 25, to Abinger Hall
JULY 28, to London
JULY 30–AUGUST 24, to Southampton, visited William Darwin
AUGUST 24, returned to Down
NOVEMBER 19–23, Hookers visited
DECEMBER 3–12, trip to London, stayed with Henrietta and Richard Litchfield
DECEMBER 4, saw Lyell
DECEMBER 8, CD → J. Fiske, first letter, commenting on his *Outlines of Cosmic Philosophy* and Herbert Spencer
DECEMBER 10, met Romanes for the first time

1875

JANUARY 4, CD → Henrietta Litchfield (his daughter) on vivisection
JANUARY 12, CD → Mivart, cutting off all communication
FEBRUARY 1, Lubbocks called
FEBRUARY 22, Lyell died
MARCH 6, Saturday, Francis Maitland Balfour visited
MARCH 31–APRIL 12, trip to London; stayed with Erasmus Darwin, then Henrietta and Richard Litchfield
APRIL 9, CD hard at work on vivisection issues
APRIL 17, Huxleys, Romanes and Lawson Tait visited
APRIL 18, Romanes visited
MAY 1, CD → August Weismann, commenting on Weismann’s work on seasonal dimorphism in butterflies
JUNE 3–JULY 5, trip to Abinger Hall
JULY–OCTOBER 3, worked on 2nd *Variation
JULY 2, *Insectivorous Plants* published
JULY 18, Sunday, Ray Lankester and Thiselton Dyer visited
AUGUST 26, Carlyle and a Miss Aitken visited
AUGUST 28–SEPTEMBER 11, trip to Southampton, stayed with William Darwin
SEPTEMBER, began *Cross and Self Fertilisation
SEPTEMBER or NOVEMBER, *Climbing Plants* published
SEPTEMBER 19, Sunday, Carlyle visited
OCTOBER 10, Hooker and Sylvester called
OCTOBER 16, Saturday, Huxleys and Tyndall visited
OCTOBER 30, Saturday, Dr. Pye Smith visited
NOVEMBER 2–3, to London on vivisection commission
NOVEMBER 7, CD → F. Galton, discussing Galton’s paper on “A theory of heredity”
NOVEMBER 8, gave testimony about vivisection to Royal Commission
DECEMBER 4, attended 80th birthday celebration for Carlyle
DECEMBER 10–20, trip to London, stayed with Henrietta and Richard Litchfield
DECEMBER 12, Sunday, visited Huxleys

1876

Resumed work on geology, reissued old books unchanged
FEBRUARY 3–5, trip to London, stayed with Erasmus Darwin
FEBRUARY 26, Friday, Huxleys arrived
APRIL 27–MAY 3, trip to London, stayed with Erasmus Darwin
MAY 5, completed 1st draft of *Cross and Self Fertilisation
MAY 6–JUNE 6, trip to visit Hensleigh Wedgwood at Hopedene
MAY 6, note on cherry blossoms written
MAY 11, note on cherry blossoms published in *Nature
MAY 28, ca., began his so-called “Autobiography”
MAY 29, CD → Romanes on Haeckel’s perigenesis and memory theory
MAY–JUNE correction of 2nd edition of *Orchids
JUNE 1, to Abinger
JUNE 5, CD → Wallace, praising his book on geographical distribution
JUNE 7–9, trip to Hollycombe
JUNE 10, returned home
AUGUST 3, finished “Autobiography”
AUGUST 19, first proofs on *Cross and Self-Fertilisation
SEPTEMBER 11, Francis Darwin’s wife died; he and infant son Bernard, born on September 7, soon moved to Down House
SEPTEMBER 26, Tuesday, second visit from Ernst Haeckel
OCTOBER 4–20, trip to Leith Hill Place and Southampton
OCTOBER 16, CD → Moritz Wagner, discussing role of isolation in species formation, responds to essays
NOVEMBER 2, sexual selection in monkeys paper published
NOVEMBER 10, *Cross and Self-Fertilisation* published
NOVEMBER 15, began writing on heterostyly
DECEMBER 2, Hookers arrived
DECEMBER 16, Saturday, Marshall arrived

1877

2nd Orchids published
JANUARY, resumed experiments on bloom
JANUARY 6, note on holly berries published
JANUARY 6–15, trip to London, stayed with Henrietta and Richard Litchfield
JANUARY 7, tea at Huxleys
JANUARY 17, note with retraction on holly berries written
JANUARY 20, note on holly berries published
FEBRUARY 19, note on fertilisation of plants written
FEBRUARY 24, note on fertilisation of plants published
MARCH 11, John Lubbock visited with his guests: Huxley, Lyon Playfair, John Morley, and Prime Minister Gladstone
APRIL 12–28, trip to London
APRIL 22, Sunday, went to visit Huxleys
APRIL 27, sent MS of paper on infant to editor of *Mind
MAY 19, Saturday, Huxleys arrived
MAY 30, Romanes visited
SUMMER, worked on *Different Forms of Flowers*; began research on plant movement, made observations on worms
JUNE 6, Wednesday, left for London
JUNE 8–JULY 3, trip to Leith Hill Place, Southampton, Stonehenge
JUNE 22, at Beaulieu Abbey, Hampshire; did worm research
JULY 9, *Different Forms of Flowers* published
AUGUST 15, note on contractile filaments written
AUGUST 20–25, trip to Abinger Hall, observed excavation of Roman villa for worm research
AUGUST 23, note on contractile filaments published
SEPTEMBER 22, Rudolf Virchow address connecting evolution with socialism
OCTOBER 26–29, trip to London, stayed with Erasmus Darwin
NOVEMBER 16, went to Cambridge
NOVEMBER 17, Saturday, awarded honorary L.L.D.
NOVEMBER 19, returned
NOVEMBER 21, note on Fritz Müller on flowers and orchids written
NOVEMBER 24, F. Galton visited
NOVEMBER 29, note on Fritz Müller on flowers and orchids published
DECEMBER 6, completed note on growth under difficulties
DECEMBER 29, note on growth under difficulties published

1878
All of this year on plant movements, bloom of leaves
JANUARY 3–7, Huxleys visited
JANUARY 17–23, trip to London, stayed with Erasmus Darwin
JANUARY 26, Saturday, Dyers and F. Balfour arrived
JANUARY 28, Monday, Dyers and F. Balfour departed
FEBRUARY 9, Saturday, Hookers arrived
FEBRUARY 12, Tuesday, Hookers departed
FEBRUARY 28–MARCH 5, trip to London, stayed with Henrietta and Richard Litchfield
APRIL 9, Saturday, returned home
APRIL 15, note on Omori shell mounds published
MAY 25–JUNE 8, trip to Southampton
JUNE 19, Saturday, Hookers arrived
AUGUST 12, to Abinger Hall
AUGUST 15, to Barlaston
AUGUST 17, signed preface to Kerner’s Flowers and their Unbidden Guests
AUGUST 23, returned home
OCTOBER 5, Saturday, F.M. Balfour arrived
NOVEMBER, Romans sent Darwin proofs of article on hybridism for Encyclopaedia Britannica
NOVEMBER 21–26, trip to London, stayed with Henrietta and George Litchfield
NOVEMBER 24, visited Huxleys
NOVEMBER 25, Leslie Stephen came to lunch
DECEMBER 8, Saturday, Huxleys and Tyndalls arrived

1879
Awarded Bressa Prize by the Turin Academy
JANUARY 18, finished Huxley’s book on Hume
FEBRUARY 27–MARCH 5, trip to London, stayed with
Erasmus Darwin
MARCH 27, note on rats and water-casks published
APRIL 19, CD → Huxley, commenting on Freedom in Science and Teaching by Haeckel
APRIL 26, Saturday, Galtons visited
MAY 6–25, trip to Worthing, Southampton, Leith Hill Place, overnight in London
MAY 26, reached home
Early SUMMER, 6 weeks on Life of Erasmus Darwin, published in the autumn
JUNE 26, departed for London
JUNE 28–AUGUST 27, trip to Lake District and elsewhere
AUGUST 12, lunch at Rushkins
Late AUGUST or early SEPTEMBER, third visit from Haeckel
SEPTEMBER 20–24, Hookers visited
SEPTEMBER 22, Saturday, Ogles visited
SEPTEMBER 29, Saturday, Romances visited
NOVEMBER, answered questionnaire by Galton for his book Inquiries into Human Faculty (1883)
DECEMBER 2–12, trip to London; stayed with Henrietta and Richard Litchfield, then Erasmus Darwin
DECEMBER 7, Sunday, visited the Huxleys
DECEMBER 15, Down, paper on hybrid geese written
DECEMBER 16, paper on coloration of butterflies written

1880
Work on worms in autumn
Preface for Weismann translation written
JANUARY 1, paper on hybrid geese published
JANUARY 3, Horace Darwin and Ida Farrer married
JANUARY 5, CD → Wallace on “Origin of species and genera” paper
JANUARY 8, paper on coloration of butterflies published
FEBRUARY 15, CD → Dohrn, offering to donate £100 of his Bressa Prize to the Zoological Station
MARCH 4–8, trip to London, stayed with Erasmus Darwin
MARCH 10, to Abinger Hall
APRIL 9, note on Omori shell mounds dated this day
APRIL 15, note on Omori shell mounds published
Late MAY, Movement sent to printers
MAY 25–JUNE 8, trip to Southampton
JUNE 19, Saturday, Huxleys arrived
JULY, 2nd edition Different forms of Flowers published
JULY 24, Saturday, Hookers arrived
JULY 26, Monday, Hookers departed
AUGUST 14–18, to Cambridge, to visit his sons, then two days in London
AUGUST 18, visited Cambridge botanic garden
AUGUST 21, Saturday, returned home
OCTOBER 28–NOVEMBER 2, trip to London
NOVEMBER 5, letter to Nature replying to Wyville Thomson written
NOVEMBER 6, advance sale of Movement, 1500 copies
NOVEMBER 7, Sunday, Elizabeth Wedgwood died
NOVEMBER 11, letter to Nature replying to Wyville Thomson published
1881

January 8, Saturday, F. Balfour and Litchfields arrived
January 15, Saturday, George and Ethel Romanes arrived
January 17, Monday, Romaneses departed
February 6, CD \(\rightarrow\) C. Semper, commenting on his book *Natural Conditions of Existence*
February 12, Saturday, F. Galton & Marshall visited
February 22, first paper in *Nature* on F. Müller’s work on movement of leaves written
February 24–March 3, trip to London
March 3, first paper in *Nature* on F. Müller’s work on movement of leaves published
April 14, second paper on movement of leaves written
April 14, letter to Holmgren on vivisection written
April 18, letter to Holmgren printed in *Times*
April 19, response of Frances Power Cobbe in *Times*
April 21, letter to Holmgren reprinted in *Nature*
April 22, letter in *Times* replying to Frances Power Cobbe on vivisection
April 28, second paper in *Nature* on F. Müller’s work on movement of leaves (based on letter of February 25, answered April 12)
April 28, young Lubbock came to tea
May 5, CD \(\rightarrow\) Alexander Agassiz on coral reefs
May 14, Saturday, Stephen arrived
May 16, Monday, Stephen departed
June 2–July 4, trip to Patterdale
July 13, paper on inheritance written
July 21, paper on inheritance published in *Nature*
August 3–5, trip to London
August 3, dined with Prince of Wales and others
August 15, Ogleys departed
August 22, Monday, Erasmus Alvey Darwin taken ill
August 26, Friday, 11 P.M., Erasmus Alvey Darwin died
August 27, day trip to London
September 1, attended his brother’s funeral at Downe
September 8–10, trip to Worthing, Sussex, to visit Anthony Rich

1882

Experimentation on bloom continued
January 8, Leslie Stephen visited at Down House
February, minor corrections for 6th printing of *Worms*
February 6, signed preface to H. Müller’s book on flowers
February 22, CD \(\rightarrow\) W. Ogle on his translation of Aristotle’s *De Partibus Animalium*
March 5, Sunday, visit from Max Müller
March 6, paper on chlorophyll read before Linnean Society
March 7, attack of cardiac distress
March 10, Dr. Clark came
March 16, paper on roots read before Linnean Society
March 19, Dr. Moore came
March 20, some improvement
April 6, note on dispersal of bivalves published
April 18, fatal heart attack
April 19, Darwin died
April 26, funeral at Westminster Abbey
August 28, paper on chlorophyll published

1888

January 5, Caroline Darwin died

1896

October 2, Emma Darwin died
Biographical Dictionary

This biographical dictionary was designed to provide information relevant to the study of Darwin’s life and works. Many of the data have been taken from biographies, autobiographies and standard reference works. The commentary, however, is not all derivative of such secondary sources, but reflects many years of study of such primary sources as the writings of Darwin, Wallace, Owen, Haeckel, Spencer and Dohrn. We should mention that some of the references give conflicting information and that some dates are uncertain.

Abbreviations for works listed as References:

BAE = Bibliography of Australian Entomology by Anthony Musgrave
BDB = Biographical Dictionary of Botanists
DBE = Deutsche Biographische Enzyklopädie
DD = Dictionnaire du Darwinisme edited by Patrick Tort
DNB = Dictionary of National Biography
DSB = Dictionary of Scientific Biography edited by C.C. Gillispie
EB = Encyclopaedia Britannica (EB 13=13th edition)
GHG = Geologists and the History of Geology by W.A. Sarjeant
NBG = Nouvelle Biographie Générale edited by Dr. Hoeffer
ODNB = Oxford Dictionary of National Biography
RBF = Charles Darwin, a Companion, by R.B. Freeman
RD = Dictionary of British and Irish Botanists and Horticulturalists by Ray Desmond

A

Abercrombie, John
October 10, 1780–November 14, 1844
Aberdeen, Scotland–Edinburgh, Scotland
Scottish physician and philosopher. Darwin read his Inquiries Concerning the Intellectual Powers and the Investigation of Truth (1830) after the Beagle voyage. He was also author of The Philosophy of Moral Feelings (1832).
References: EB 13.

Agassiz, Alexander
December 17, 1835 – March 27, 1910
Neuchâtel, Switzerland – at sea
Swiss-American zoologist and mining engineer. The son of Louis Agassiz, he ultimately succeeded his father as Director of the Museum of Comparative Zoology at Harvard University. A shrewd businessman whose wife was from a wealthy family, he used his substantial personal fortune to advance his scientific career and enjoyed great influence on governmental and academic policy. Unlike his father, he did not oppose evolution. However, he did not support natural selection and was one of the major opponents of Darwin’s coral reef theory.
References: Dupree in DSB, G.R. Agassiz 1913.

Agassiz, [Jean] Louis [Rudolphe]
May 20, 1807 – December 14, 1873
Motier-en-Vuly, Switzerland – Cambridge, Massachusetts, USA
Swiss naturalist. He immigrated to the United States in 1846 and became a professor at Harvard University in 1847. Early in his career he was strongly influenced by German idealism, and later advocated successive special creation. A popular lecturer and teacher, he had many influential students. He opposed Darwin’s evolutionary theories. As a geologist he was successful in establishing the notion of an ice age with extensive glaciation. However, his attempt to refute evolution by claiming that Brazil had been covered by glaciers was not successful.
References: Lurie in DSB, Lurie 1913.

Alder, Joshua
April 7, 1792 – January 21, 1867
English businessman, marine zoologist and malacologist. He collaborated with Albany Hancock on systematics of Nudibranchia, a group of some interest to Darwin.
References: Tort in DD, Bettam & Foote in DNB.
Archiac, Étienne Jules Adolphe Desmier de Sant Simon, Vicomte D'
September 24, 1802 – December 24, 1868
Rheims, France – Paris, France
French cavalry officer who turned to geology after retirement and became quite eminent. His greatest work was a *Histore des Progrès de la Géologie* (1847-1860). In the first volume he criticized Darwin's views on the formation of mould by earthworms. Darwin, in *Worms*, responded that D'Archiac was arguing from "inner consciousness" rather than observation.
References: EB13, GHG.

Argyll, George John Douglas Campbell, 8th Duke of
April 30, 1823 – April 24, 1900
Scottish geologist and politician who tried to reconcile science with religion. Author of *The Reign of Law* (1866), he opposed Darwin's views on coral reefs and natural selection. Darwin cites him on anthropology and ornithology in *The Descent of Man*. He was one of the pallbearers at Darwin's funeral.
References: DHG, Tort in DD, EB 13.

Aristotle
384 BC – 322 BC
Stagira – Chalcis, Euboea
Greek philosopher. He is mentioned in the historical sketch in later editions of the *Origin*. Darwin admired a translation of his *De Partibus Animalium*.

Audubon, John James
April 26, 1785 – January 27, 1851
Les Cayes, Santo Domingo – New York, New York, USA
American ornithologist and painter. Darwin occasionally cites his works on the natural history of birds.
References: Mengel in DSB.

Azara, Félix de
May 18, 1742 – October 20, 1821
Huesca, Spain – Huesca, Spain
Spanish naturalist. His writings on South America were an important source of information for Darwin on such topics as geographical distribution and variation.
References: Guerra in DSB.

Babbage, Charles
December 26, 1792 – October 18, 1871
English mathematician, inventor of calculating machines. Darwin, who knew him well on a social basis, discussed his character in the *Autobiography*.
References: Gridgeman in DSB.

Babington, Charles Cardale
November 23, 1808 – July 22, 1895
Ludlow, England – Cambridge, England
Botanist, author of the *Manual of British Botany* (1843). A professor at Cambridge, succeeding Henslow in 1863, he founded the Ray Club as a successor to Henslow's evenings. He was not enthusiastic about evolution.
References: Desmond in DSB, Babington 1897.

Baden-Powell, see Powell, Baden

Baer, Karl Ernst von
February 28, 1792 – November 28, 1876
Piep, Estonia – Dorpat, Estonia
Embryologist, professor at Königsberg, later worked at the Academy of Sciences of Saint Petersburg. He was one of the most influential scientists of his day, his reputation resting upon his discovery of the mammalian egg and his comparative embryological work, which gave four basic types of animals much like those of Cuvier. The law that he enunciated has been treated as an alternative to embryological recapitulation, but it was strictly formal and not historical. Although he was favorably impressed by Darwin's accomplishment, he remained an idealist and insisted that evolution must have a teleological basis.
References: Di Gregorio in DSB.

Bain, Alexander
June 11, 1818 – September 18, 1903
Aberdeen, Scotland – Aberdeen, Scotland
Scottish philosopher and psychologist, author of *The Senses and the Intellect* (1855) and *The Emotions and the Will* (1859), abridged as *Mental and Moral Science* (1868), all very influential works. Bain's psychology was in the associationist tradition and tended to emphasize experience and de-emphasize instinct, especially in morals. Darwin was more of
a “nativist” in keeping with his view that the mind is a product of evolution. Both he and Darwin had a strongly physiological approach to psychology. Darwin frequently cites Bain in *The Descent of Man* and *The Expression of the Emotions*.

References: Tort in DD, Hattiangadi in DSB.

Baird, Spencer Fullerton
February 3, 1883 – August 18, 1887
Reading, Pennsylvania, USA – Woods Hole, Massachusetts, USA
American systematic zoologist, became assistant to Joseph Henry at Smithsonian Institution 1850, Secretary 1878. Darwin cites his work on bird migration.

Balfour, Francis Maitland
November 10, 1851 – July 19 or 20, 1882
Edinburgh, Scotland – near Courmayeur, Switzerland
English comparative embryologist and comparative anatomist. A student of Michael Foster, he was very talented and became a professor of animal morphology at Cambridge in 1882. He died in a climbing accident at the age of thirty.

References: Churchill in DSB.

Barrande, Joachim
August 11, 1799 – October 5, 1883
Sangues, Haute-Loire, France – Frohsdorf, Austria
French paleontologist and stratigrapher, worked much of the time in Prague. The author of *Système Silurien* and other important paleontological works, he was one of Darwin’s more vehement opponents with respect to evolution. Darwin cites him as one of the leading references on the fossil record.

References: Hansen in DSB.

Bastian, Henry Charlton
April 26, 1837 – November 17, 1915
Truro, Cornwall, England – Chesham Bois, England
British physician and biologist, an authority on nematode worms. He was a major advocate of spontaneous generation, and debated the topic with Huxley. He also severely and rather intemperately criticized Darwin’s theory of pangenesis.

References: Clarke in DSB.

Bate, Charles Spence
March 16, 1819 – July 29, 1889
Near Truro, Cornwall, England – South Brent, Devon, England
British dental surgeon and carcinologist. Darwin often corresponded with him and cited his works.

References: Foote in ODNB.

Bates, Frederick
November 18, 1829 – October 6, 1903
Leicester, England – Chiswick, England
English entomologist, a younger brother of Henry Walter Bates.

References: Poulton 1904, BAE.

Bates, Henry Walter
February 8, 1825 – February 16, 1892
English naturalist and entomologist. Bates accompanied Wallace to South America. Darwin helped arrange for the publication of Bates’s classic book on natural history, *The Naturalist on the River Amazons*. His work on geographical variation and “Batesian” mimicry was very important in establishing the theory of natural selection.

References: McKinney in DSB.

Beaumont, Élie: see Élie de Beaumont, J.

Bechstein, Johann Matthäus
July 11, 1757 – February 23, 1822
Waltershausen, Thuringia, Germany – Dreissigacker, Germany
German zoologist. Darwin made use of his *Gemeinnützige Naturgeschichte Deutschlands*. Darwin cites him in *Variation*.

References: Jahn’s *Geschichte der Biologie*, NBG.

Beechey, Frederick William
February 17, 1796 – November 29, 1856
English sailor, naturalist and explorer. Darwin cites his work in the coral reef book.

References: EB 13.

Belcher, Edward (Sir)
1799 – March 18, 1877

References: EB.

Bell, Charles (Sir)
November, 1774 – April 28, 1842
Scottish anatomist and surgeon. His publications on
the hand and on facial expression were important for Darwin’s psychological work. References: Tort in DD, Amacher in DSB.

Bell, Thomas
October 11, 1792 – March 13, 1880
Poole, Dorsetshire, England – Selbourne, Hampshire, England
English dental surgeon and zoologist and Professor of Zoology in King’s College, London. An expert on reptiles, he monographed the reptiles of the voyage of the Beagle. He was in the chair at the meeting on July 1, 1858 where the preliminary statement on evolution by natural selection by Darwin and Wallace was read, but he was strongly opposed to Darwinism.
References: RBF.

Belt, Thomas
1832 – September 21, 1878
Newcastle-on-Tyne, England – Denver, Colorado, USA
References: RD.

Beneden, Edouard van
March 5, 1846 – April 28, 1910
Louvain, Belgium – Liège, Belgium
Belgian zoologist, cytologist and comparative anatomist, son of Pierre-Joseph van Beneden.
References: Florkin in DSB.

Beneden, Pierre-Joseph van
December 19, 1809 – January 8, 1894
Mechlin, Belgium – Louvain, Belgium
Belgian zoologist, professor at the University of Louvain. He was the author of a classic book on symbiosis.
References: Florkin in DSB.

Bennett, John Joseph
January 8, 1801 – February 29, 1876
Tottenham, Middlesex, England – Maresfield, Sussex, England
English botanist, on the staff of the British Museum 1852-1870. He was Secretary of the Linnean Society from 1838-1852.
References: BDB, RD.

Bentham, George
September 22, 1800 – September 10, 1884
English systematic botanist, author of the Handbook to the British Flora, and President of the Linnaean Society from 1862 to 1874. He was a nephew of the philosopher Jeremy Bentham. He was an important source of data for Darwin on plant variation and diversity. He was one of the first of Darwin’s colleagues to endorse evolution. He collaborated with Joseph Hooker on the Genera Plantarum.
References: Taylor in DSB.

Berkeley, Miles Joseph (The Reverend)
April 1, 1803 – July 3, 1889
Biggin, Northamptonshire, England – Harbrough, England
English clergyman and systematic botanist, an outstanding expert on fungi. A close associate of Darwin’s teacher J.S. Henslow. He described some of Darwin’s fungi from the Beagle voyage. Later he did some research that extended Darwin’s experimental work on the effects of seawater on the seeds of plants.
References: BDB, Tort in DD.

Bingley, William
1774 – March 11, 1823
English naturalist and popular writer, author of Animal Biography (1802) and Practical Introduction to Botany (1817).
References: Courtney in DNB.

Bischoff, Theodor Ludwig Wilhelm
October 28, 1807 – December 5, 1882
Hanover, Germany – Munich, Germany
German embryologist and physiologist. His dualistic philosophy inhibited him from accepting evolution, and he objected to natural selection on the grounds that it provided no explanation for the union of body and soul. Darwin cites his work in The Descent of Man in connection with the resemblance of human development to that of other primates.
References: Tort in DD, Rothschuh in DSB.

Blackwall, John
January 20, 1790 – May 11, 1881
Manchester, England – Llanrwst, Wales
English zoologist, an expert in spiders.
References: Bettany in DNB.
Blainville, Henri Marie Ducrotay de
September 12, 1777 – May 1, 1850
Arques, Normandy, France – Paris, France
French paleontologist and zoologist. He was closely associated with Georges Cuvier, and succeeded him at the Muséum National d’Histoire Naturelle in Paris. He was an advocate of the great chain of being (scala naturae), and not an evolutionist.
References: Laurent and Tort in DD, Coleman in DSB.

Blomefield, L.; see Jenyns, L.

Blumenbach, Johann Friedrich
May 11, 1752 – January 22, 1840
Gotha, Germany – Göttingen, Germany
German vertebrate anatomist and physiologist. He is sometimes considered a proto-evolutionist. His work on generation was of considerable interest to Darwin. His work on man and other primates was important for Darwin’s physical anthropology.
References: Tort in DD, Baron in DSB.

Blyth, Edward
December 23, 1810 – December 27, 1873
English zoologist, lived in India 1841-1862. He was a prolific writer who shared many interests with Darwin, especially in species and variation. They corresponded extensively and Darwin often cited his publications. Although it has been suggested that Darwin derived some important ideas from Blyth without giving due credit, there is no real evidence that such was the case.
References: McKinney in DSB.

Boerhaave, Herman
December 31, 1668 – September 23, 1738
Verhout, near Leiden, Netherlands – Leiden, Netherlands
Dutch physician, professor of medicine and chemistry at Leiden. A very influential teacher, he is mentioned in Darwin’s essay on the life of Erasmus Darwin.
References: Lindeboom in DSB.

Bonaparte, Charles Lucien
May 24, 1803 – July 29, 1857
Paris, France – Paris, France
French zoologist. He was the son of Napoleon’s younger brother Lucien Bonaparte.
References: Tort in DD, Petit in DSB.

Bonnet, Charles
March 13, 1720 – May 20, 1793
Geneva, Switzerland – Geneva, Switzerland
Swiss philosopher and biologist. His embryological theory was very influential in his day and subsequently, especially with respect to the great chain of being or scala naturae. His work on parthenogenesis and regeneration were particularly important. Darwin was very much interested in such matters.
References: Tort in DD, Pilet in DSB.

Bonney, Thomas George
July 27, 1833 – December 10, 1923
Rugeley, England – Cambridge, England
English geologist.
References: Bulman in DSB, EB13.

Bory de Saint-Vincent, Jean Baptiste Georges Marie
July 6, 1778 – December 22, 1846
Agen, France – Paris, France
French naturalist, a follower of Buffon and Lamarck. He directed an expedition to Morea in 1829. He edited the Dictionnaire Classique d'Histoire Naturelle, which was an important reference work for Darwin while on the Beagle. Darwin mentions him in the Historical Sketch in later editions of the Origin.
References: George in DSB, NBG.

Bowerbank, James Scott
July 14, 1797 – March 8, 1877
English businessman and paleontologist, founder of the Palaeontographical Society. He lent Darwin cirripedes from Gault. He was also an authority on sponges, and provided Darwin with specimens of sponge-dwelling barnacles from his collection.
References: DHG, EB13.

Braun, Alexander Carl Heinrich
May 10, 1805 – March 29, 1877
Regensburg, Germany – Berlin, Germany
German botanist, professor in Berlin from 1851. His investigations on phyllotaxis were highly influential in plant morphology. An advocate of Naturphilosophie and a teleologist, he was strongly opposed to natural selection.
Geison in DSB.
Bree, Charles Robert
1811 – 1886
English physician. An anti-evolutionist, he frequently criticized Darwin’s views in print.
References: Tort in DD.

Brehm, Alfred Edmund
February 2, 1829 – November 11, 1884
Renthendorf, Germany – Renthendorf, Germany
German zoologist, director of the Hamburg zoo and the Berlin aquarium. Darwin frequently referred to his popular zoological reference work *Thierleben*, especially in *The Descent of Man*.

Brehm, Christian Lugwig
January 1, 1787 – June 23, 1864
Schönau vor dem Walde bei Gotha, Germany – Renthendorf, Thüringen, Germany
German clergyman and naturalist, father of Alfred Edmund Brehm
References: *Lexikon der bedeutenden Naturwissenschaftler*.

Bridgewater, Francis Henry Egerton, 8th Earl of
November 11, 1756 – February 12, 1829
Probably London, England – Paris, France
English naturalist and antiquarian. He bequeathed £8,000 under the aegis of the Royal Society of London for publication of books “On the Power, Wisdom and Goodness of God, as Manifested in the Creation.” Darwin responded to many of these “Bridgewater Treatises” in his writings.
References: ODNB, NBG.

Bridgman, Laura Dewey
December 21, 1829 – May 24, 1889
Hanover, New Hampshire, USA – Boston, Massachusetts, USA
American blind deaf-mute, deprived of her eyesight and hearing at the age of two by an attack of scarlet fever. Thus she was not, as Darwin believed, congenitally blind and deaf. Thanks to the efforts of Dr. S.G. Howe, head of the Perkins Institute for the Blind in Boston she was educated and with remarkably good results. Darwin used material on her in considering whether facial expressions are innate or acquired.
References: EB 13.

Brocchi, Giambattista
February 18, 1772 – September 23, 1826
Bassano, Italy – Khartoum, Sudan
Italian mining engineer, geologist and invertebrate paleontologist. Author of *Conchologia Fossile Subappenina* (1814), he did extensive field research in the Italian peninsula and influenced Darwin both directly and indirectly through Lyell. Although not an evolutionist he was interested in extinction and changes in the fossil record through time.

Broderip, William John
November 21, 1789 – February 27, 1859
English lawyer, zoologist and paleontologist
References: Boase and Pease-Watkin in ODNB.

Bromfield, William Arnold (Dr.)
July 4, 1801 – October 9, 1851
Boldre, Hants, England – Damascus, Syria
English physician and botanist. Darwin cited his work in *Flowers*.
References: RD.

Brongniart, Adolphe Théodore
January 14, 1801 – February 18, 1876
Paris, France – Paris, France
French paleobotanist, son of Alexandre Brongniart, and professor of botany at the *Musée d’Histoire Naturelle*. An important botanical comparative anatomist, he believed in progressive changes in the fossil record, but was not an evolutionist.
References: Laurent in DD, Leroy in DSB.

Brongniart, Alexandre
February 5, 1770 – October 7, 1847
Paris, France – Paris, France
French geologist and paleontologist. A collaborator with Cuvier, he was also one of the pioneers of stratigraphy.
References: Laurent in DD, Rudwick in DSB.

Brunner, Heinrich Georg
March 3, 1800 – July 5, 1862
Ziegelhausen near Heidelberg, Germany – Heidelberg, Germany
German zoologist, professor at Heidelberg. He produced the first German translations of the *Origin of Species* and of *Orchids*. He had an idealistic approach and was sort of a proto-evolutionist.
References: Tort in DD, Hansen in DSB.
Brougham, Henry Peter, 1st Baron Brougham & Vaughan
September 19, 1778 – May 7, 1868
Edinburgh, Scotland – Cannes, France
British lawyer and politician. Darwin was interested in his Discourse on Natural Theology (1835).
References: Hunt in DNB, Lobban in ODNB.

Brown, Robert
December 21, 1773 – June 10, 1858
Montrose, Scotland – London, England
Eminent British botanist, Keeper of the Botanical collections of the British Museum. He made major contributions to systematics and cytology. He first appreciated the ubiquity of the nucleus in cells, and discovered the so-called “Brownian movement” in 1827. He provided Darwin, with whom he often visited socially, with important information on the reproduction of flowering plants and other matters. It was Brown who first recommended the work of Sprengel to Darwin.
References: Stearn in DSB.

Brown, Robert
March 23, 1842 – October 26, 1895
Campster, Caithness, England – Streatham, Surrey, England
English botanist and plant collector. It is important not to confuse him with the older botanist of the same name.
References: RD, Tort in DD.

Brown-Séquard, Charles Édouard.
April 8, 1817 – April 1, 1894
Port-Louis, Mauritius – Sceaux, France
French physiologist. His experimental work seemed to Darwin to provide evidence for the inheritance of acquired characters.
References: Tort in DD, Grmek in DSB.

Browne, James Crichton (Sir)
November 29, 1840 – January 31, 1938
Edinburgh, Scotland – Dumfries, Scotland
Scottish physician, head of the West Riding Lunatic Asylum. He later changed his name to Crichton-Browne. He was of great assistance to Darwin in his work on emotional expression.
References: RBF, J. D. Rolleston in DNB.

Brullé, Gaspard Auguste
April 7, 1809 – January 21, 1873
French zoologist, professor at Dijon. Darwin was much interested in what he called “Brullé’s rule.”
References: BAE, RBF.

Buch, Leopold von
April 25, 1774 – March 4, 1853
Stolpe, Germany – Berlin, Germany
German geologist. His views on volcanoes were of great importance for Darwin’s work on South America. Darwin mentions him in the Historical Sketch in later editions of the Origin.
References: Tort in DD, Nieuwenkamp in DSB.

Buckland, William (the Reverend)
March 12, 1784 – August 14, 1856
Axminster, England – Islip, England
English geologist and paleontologist. He was a catastrophist and his views were strongly influenced by theological considerations, being author of a “Bridgewater Treatise” in support of natural theology.

Buckle, Henry Thomas
November 24, 1821 – May 20, 1862
Lee, Kent, England – Damascus, Syria
English historian and social philosopher, author of History of Civilization in England. Darwin, who knew him socially, makes some interesting comments about him in his autobiography, but did not think very highly of his generalizations.
References: Tort in DD, Heyck in ODNB, EB13.

Buckman, James (Professor)
November 20, 1814 – November 23, 1884
Cheltenham, England – Bradford Abbas, England
English botanist and paleontologist, Professor at the Royal Agricultural College in Cirencester 1848-1863. He sent Darwin specimens of fossil barnacles which he had named. Darwin cites his botanical work, including the Variation. He was a strong supporter of Darwin beginning with a report to the British Association meeting of 1860.
References: GHG, RD, Torrens in ODNB.

Büchner, Ludwig
March 29, 1824 – April 1, 1899
Darmstadt, Germany – Darmstadt, Germany
German physician and philosopher. A materialist, he was author of Kraft und Stoff (1855). He was a strong supporter of evolution.
References: EB13.
Buffon, Georges-Louis Leclerc (Chevalier de, Comte de)
September 7, 1707 – April 16, 1788
Montbard, Burgundy, France – Montbard, Burgundy, France
French natural scientist. Although Buffon made contributions to the physical sciences and mathematics early in his career, he soon switched to natural history. His multi-volume *Histoire Naturelle* was very popular. It contained a great deal of speculation about the nature of species and other topics of theoretical and philosophical interest. Buffon maintained that both the earth and its biota have changed through time, but was not an evolutionist in the modern sense. Darwin mentions him in the *Historical Sketch* in later editions of the *Origin*.

Burdach, Karl Friedrich
June 12, 1776 – July 16, 1847
Leipzig, Germany – Königsberg, Germany
German anatomist and physiologist, director of the anatomical institute at Königsberg. He maintained that lower forms of life have given rise to higher ones. Mentioned by Darwin in the *Historical Sketch* in later editions of the *Origin*, he was an advocate of Naturphilosophie.
References: Kay in DSB, Breidbach 2005.

Burden-Sanderson, John Scott
December 21, 1828 – November 23, 1905
English physician and physiologist, professor at University College, London and later at Oxford. He provided Darwin with information useful to his studies on insectivorous plants, including some experimental work on digestion described in that book. Like Darwin, he advocated vivisection.
References: Geison in DSB.

Burmeister, (Karl) Hermann (Konrad)
January 15, 1807 – May 2, 1892
Stralsund, Prussia – Buenos-Aires, Argentina
German zoologist, professor at Halle from 1834 until forced to leave as a result of the unrest during 1848 to 1850. He was director of the National Museum of Buenos Aires from November 1, 1861. He was author of *Geschichte der Schöpfung* (Leipzig, 1856) and many publications on fossil and living arthropods. Darwin refers favorably to his early work on cirripedes.
References: Tort in DD.
younger’s novel The Way of All Flesh. He attended Samuel Butler the elder’s school together with Darwin, but because of their different ages they were mere acquaintances at the time. Later they were both students at Cambridge and Darwin stimulated Butler’s life-long interest in botany.

Caldecleugh, Alexander
?

Businessman and author of some travel works on South America. Darwin spent some time with him there. Although Darwin did not think highly of his books, he was most grateful for Caldecleugh’s hospitality. He also published a paper on South American geology to which Darwin refers.

References: Tort in DD, RBF.

Candolle, Alphonse de
October 17, 1806 – April 4, 1893

Paris, France – Geneva, Switzerland

Botanist, son of Augustin-Pyramus de Candolle, with whom he should not be confused. He succeeded his father as Professor of Botany at Geneva in 1835. He did outstanding work on plant classification, ecology, and biogeography. His Géographie Botanique Raisonné is the most heavily-annotated item in Darwin’s personal library.

References: Pilet in DSB.

Candolle, Augustin-Pyramus de
February 4, 1778 – September 9, 1841

Republic of Geneva – Geneva, Switzerland

Botanist, father of Alphonse de Candolle, with whom he should not be confused. Although primarily a systematist, he had broad interests, and Darwin paid much attention to his works, especially those that dealt with biogeography and teratology.

References: Pilet in DSB.

Carrière, Élie Abel
1818 – 1896

Mayen Multien, Seine et Marne, France – Paris, France

French horticulturalist. He worked at the natural history museum in Paris, and was “chef” of the Revue Horticole. Darwin cites his work in relation to variation and artificial selection.

References: Tort in DD.

Carus, Carl Gustav
January 3, 1789 – July 28, 1869

Leipzig – Dresden, Germany

strongest supporter in Italy and an important popularizer. With Leonardo Salimbene he produced the first Italian translation of The Origin of Species (1864). He also translated some of Darwin’s later books. Darwin cites his work on human anatomy and some other topics in The Descent of Man.

German philosophical physician, scientist and painter, an advocate of Naturphilosophie.

References: Lexikon der bedeutenden Naturwissenschaftler.

Carus, Julius Victor

August 23, 1823 – March 10, 1903
Leipzig, Germany – Leipzig, Germany

German zoologist, professor at Leipzig, also author of an important book on the history of biology. From the fourth English edition, he prepared a new German translation of the *Origin of Species*, the one by Bronn not having been satisfactory. He also translated several of Darwin’s other books.

References: Tort in DD, Robinson in DSB.

Chambers, Robert

July 10, 1802 – March 17, 1871
Peebles, Scotland – St. Andrews, Scotland

Scottish writer and publisher. His anonymously published popular book *Vestiges of the Natural History of Creation* presented Lamarckian and quinarian notions about evolution. The book tended to discredit evolutionary thinking among professional scientists and may have contributed to Darwin’s hesitancy to publish. Darwin mentions him in the *Historical Sketch* in later editions of the *Origin*.

References: Williams in DSB.

Chamisso, Adelbert von

c. January 27, 1781 – August 21, 1838
Château de Boncourt, Champagene, France – Berlin, Germany

French-born naturalist who spent much of his life in Prussia. Chamisso was also a famous poet and humorist. He circumnavigated the globe with the Russian Kotzebue and made important observations on geology and zoology.

Champion, George Charles

April 29, 1851 – August 6, 1927

English entomologist. He described some of Darwin’s Coleoptera of the *Beagle* voyage.

Cheeseman, Thomas Frederick

1846 – October 15, 1923
Hull, Yorkshire, England – Auckland, New Zealand

English Botanist. He immigrated to New Zealand in 1854, where he became Curator of the Auckland Museum. He corresponded extensively with Darwin about orchids.

Claparède, [Jean Louis René Antoine] Édouard

April 24, 1832 – May 31, 1871
Geneva, Switzerland – Siena, Italy

Swiss invertebrate zoologist. An early and strong supporter of Darwinism, he published a favorable review of the *Origin of Species* in 1861. He also persuaded Clémence Royer to restrain herself somewhat when she translated the *Origin of Species* into French. Darwin cites his histological work in *Worms*.

References: Tort in DD, Saussure 1873.

Clarke, Thomas Belt

1798 – 1878

English geologist. Darwin met him before he immigrated to Australia in 1839. They had important correspondence on geological topics.

Claus, Carl

January 2, 1835 – January 18, 1899
Kassel, Hessen, Germany – Vienna, Austria

Invertebrate zoologist, Professor at Vienna. He was a strong supporter of Darwin’s views, and dedicated a work on the phylogeny of crustaceans to him.

References: Tort in DD.

Cobbe, Frances Power (Miss)

December 4, 1822 – April 5, 1904
Newbridge, near Dublin, Ireland – Hengwyr, near Dolgelly, Wales

British political activist and writer, feminist and anti-vivisectionist, author of *The Theory of Intuitive morals* (1855). She disagreed with Darwin on vivisection and the ethical implications of Darwinism. Darwin responded to her criticisms in a footnote in the second edition of *The Descent of Man*.

Cobbold, Thomas Spencer

1828 – March 20, 1886

English physician and parasitologist. He described the parasitic worms from Darwin’s *Beagle* collections.

References: RBF, Pagel’s *Biographisches Lexicon*
herforragender Ärzte des neunzehnten Jahrhunderts, George Thomas Bettany in DNB.

Coldstream, John
March 19, 1806 – December 7, 1863
Leith, Scotland – Irthing House, near Carlisle, Scotland
Scottish physician and invertebrate zoologist.
Coldstream was a friend of Darwin at Edinburgh who shared his interests in marine animals and other aspects of natural history. He was also the author of an important encyclopedia article on cirripedes.
References: ODNB.

Colling, Charles
1751 – 1836
Ketton, near Darlington, England
English cattle breeder. Darwin refers to him in *The Variation of Animals and Plants under Domestication*.
References: Tort in DD.

Collins, Mr.
Animal breeder mentioned in *The Origin of Species*. Perhaps Charles Colling (q.v.).

Comte, Auguste
January 19, 1798 – September 5, 1857
Montpellier, France – Paris, France
French philosopher, the founder of positivism. Darwin was interested in his philosophical views.
References: Laudan in DSB.

Conrad, Timothy Abbot
June 21, 1803 – August 8, 1877
Near Trenton, New Jersey – Trenton, New Jersey
American malacologist and paleontologist, one of the first to correlate American strata with those of Europe. He provided Darwin with some specimens of barnacles. He opposed evolution.
References: GHG, Moore in DSB.

Conybeare, William Daniel (Reverend)
June 7, 1787 – August 12, 1857
English geologist.
References: EB Torrens in ODNB.

Cope, Edward Drinker
July 28, 1840 – April 12, 1897
Philadelphia, Pennsylvania, USA – Philadelphia, Pennsylvania, USA
American paleontologist. He was an important Neolamarckian.
References: Tort in DD, Osborn 1931, Maline in DSB.

Corfield, Richard Henry
1804 – 1897
Friend of Darwin at Shrewsbury School. He lived in Valparaiso, and Darwin stayed with him there in 1834 and 1835.
References: RBF.

Covington, Syms
1816? – February 17, 1861
England – Australia
Darwin’s servant from 1833 to 1839. He emigrated to Australia in 1839 and corresponded with Darwin from time to time. He sent specimens of cirripedes from there.
References: RBF.

Cresy, Edward
May 7, 1792 – November 12, 1858
Dartford, Kent, England – South Darenth, Kent, England
English architect. A neighbor of Darwin at Down, he had a son of the same name.
References: Goodwin in DNB.

Crüger, Hermann
February 11, 1818 – February 28, 1864
Hamburg, Germany – San Fernando, Trinidad
German pharmacist who settled in Trinidad in 1841. He was government botanist director of the botan-
ical garden from 1857 to 1864. He was a major source of information for Darwin on various aspects of floral biology.

References: Tort in DD, RD.

Cuming, Hugh
February 14, 1791 – August 10, 1865
English naturalist and collector of shells and plants. He made extensive voyages in the Pacific. Darwin used his collections in preparing his barnacle monograph. He shipped orchids from Manila to England.

References: RD.

Cumming, Joseph George (The Reverend)
February 15, 1812 – September 21, 1868
English clergyman, geologist and historian, professor at Birmingham. Author of The Isle of Man (1848). Darwin refers to his early geological work in his paper on boulders.

References: GHG.

Currey, Frederick
August 19, 1819 – September 8, 1881
English mycologist.

References: RD.

Cuvier, Frédéric
June 8, 1773 – July 24 1838
Montbéliard, Württemberg – Strasbourg, France
French naturalist, younger brother of Georges Cuvier. Darwin took a great interest in his work on the behavior and intelligence of animals.

References: Tort in DD.

Cuvier, Georges
August 23, 1769 – May 13, 1832.
Montbéliard, Württemberg – Paris, France
French zoologist and educator. He was leading comparative anatomist of the early nineteenth century, and founder of modern vertebrate paleontology. He was opposed to evolution, especially the version of Lamarck. He advocated catastrophism and opposed E. Geoffroy Saint-Hilaire’s notion of the unity of type. Their debate about that and related matters attracted a great deal of attention. Darwin often refers to his writings on the principles of comparative anatomy.

References: Bourdier in DSB.

Dallas, William Sweetland
January 31, 1824 – May 28, 1890
English entomologist. He translated Müller’s Für Darwin into English, and wrote the glossary that was added to the sixth edition of The Origin of Species.

References: Tort in DD.

Dana, James Dwight
February 12, 1813 – April 14, 1895
Utica, New York – New Haven, Connecticut
American mineralogist, geologist, and zoologist, professor at Yale. A student of Louis Agassiz and an idealistic morphologist, he accepted evolution only reluctantly. Dana was important to Darwin because of his work on coral reefs, on systematic theory, and on the systematics, comparative anatomy and biogeography of crustaceans. They corresponded extensively.

References: Stanton in DSB, Gilman 1899

Darwin, Anne Elizabeth (“Annie”)
March 2, 1841 – April 23, 1851
Daughter of Charles Darwin. He was very fond of her, and her death at the age of ten, an event that was very painful to him, was instrumental in causing him to rethink his position on religion and ethics.

References: RBF.

Darwin, Bernard Richard Meirion
September 7, 1876 – October 18, 1961
Downe, England – St. Leonards, Sussex, England
Son of Francis Darwin and grandson of Charles Darwin. His mother having died of puerpal fever in 1876, he subsequently lived with his father and grandparents at Down.

References: RBF, Ryde in ODNB.

Darwin, Caroline
September 14, 1800 – January 5, 1888
Shrewsbury, England – Surrey, England
Older sister of Charles Darwin. She married Josiah Wedgwood III in 1837.

References: RBF.
Darwin, Catherine (Mrs. Charles Langton)
May 10, 1810 – February 2, 1866
Shrewsbury, England – Shrewsbury, England
Younger sister of Charles Darwin.

Darwin, Charles [Robert]
February 9, 1809 – April 19 1882
Shrewsbury, England – Downe, Kent, England
English naturalist, the father of modern evolutionary biology and author of its central document, *On the Origin of Species by means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life.*

Darwin, Charles Waring
December 5, 1856 – June 28, 1858
Downe, Kent, England – Downe, Kent, England
Tenth and last child of Charles Darwin. He died of scarlet fever around the time that Wallace’s manuscript on natural selection arrived. The child never learned to walk or talk, but accounts of his being seriously retarded would seem to have been somewhat exaggerated.

References: RBF.

Darwin, Elizabeth (‘Bessy’)
July 8, 1847 – 1928
Sixth child of Charles Darwin. She never married.

References: RBF.

Darwin, Emma
See Wedgwood, Emma

Darwin, Erasmus (Dr.)
December 12, 1731 – April 18, 1802
Elston, near Newark, England – the Priory, near Derby, England
Paternal grandfather of Charles Darwin. A sort of polymath, he was a physician, philosophical poet, popular writer, and natural scientist. He is well known for having invented a quasi-evolutionary theory quite similar to that of Lamarck. For that reason he is mentioned in the *Historical Sketch* in later editions of the *Origin*. His writings may have influenced Charles Darwin’s thinking on a variety of subjects, including psychology and developmental genetics. Charles Darwin’s biography of Erasmus Darwin was published after having been censored by Henrietta Darwin.

References: EB13.

Darwin, Francis (Professor, Sir)
August 16, 1848 – September 19, 1925
Down House, England – Cambridge, England
Son of Charles Darwin. An important botanist and plant physiologist, he became professor at Cambridge. He qualified as a physician but did not practice. He assisted his father in his plant physiological researches, especially in later years, and was a sort of junior author of *The Power of Movement in Plants*. His observations and experiments are also incorporated in some of Darwin’s other publications. He was author of *The Elements of Botany, The Physiology of Plants, Life and Letters of Charles Darwin* and *More Letters of Charles Darwin* as well as many scientific papers. He married three times: to Amy Ruck 1874-1876 (two children); to Ellen Crofts 1883-1903 (three children); to Florence Fisher, 1913-1920.

References: RBF, George in DSB, Junker in ODNB, Seward and Blackman, 1932.

Darwin, Frances Crofts
1886 – March 30, 1960
Daughter of Francis Darwin and Ellen Wordworth Crofts Darwin, and granddaughter of Charles Darwin. She became the wife of Professor F. M. Cornford of Cambridge, and was the mother of the poet Francis Cornford.

References: RBF.

Darwin, George Howard (Professor, Sir)
July 9, 1845 – December 7, 1912
Down House, Kent, England – Cambridge, England
Fifth child of Charles and Emma Darwin. An astronomer, he was Plumian Professor, Cambridge from 1883 to 1912, and was knighted in 1905. He
often assisted his father with mathematical problems. His observations on the fertilization of orchids are recorded in Darwin’s publications.

References: Kopal in DSB, Kushner in ODNB.

Darwin, Henrietta Emma
September 25, 1843 – 1930
Daughter of Charles Darwin, became Mrs. Richard Litchfield in 1871. She assisted Darwin in many ways, especially with his publications. As Mrs. Litchfield, she was author of *Emma Darwin: a Century of Family Letters.*

Darwin, Horace (Sir)
May 13, 1851 – September 22, 1925
Downe, England – Cambridge, England
Ninth child of Charles and Emma Darwin. He assisted his father in some experiments, and devised instruments for plant physiology used by Charles and Francis Darwin and otherwise assisted him in research. He married Emma (Ida) Cecilia Farrer. They had three children.

References: RBF, Glazebrook in ODNB.

Darwin, Leonard (Major)
January 15, 1850 – March 26, 1943
Downe, England – West Hoathly, Sussex, England
Eighth child of Charles and Emma Darwin, he was commissioned in the Royal Engineers in 1870. Later he became involved in politics and served as President of the Eugenics Society.

References: RBF, Edwards in ODNB.

Darwin, Marianne (Mrs. Henry Parker)
April 7, 1798 – July 18, 1858
Older Sister of Charles Darwin.

References: RBF.

Darwin, Mary Eleanor
September 23, 1842 – October 16, 1842
Downe, England – Downe, England
Third child of Charles Darwin.

References: RBF.

Darwin, Robert Waring (the elder)
1724 – 1816
Brother of Erasmus Darwin and great-uncle of Charles Darwin. He was the author of a book entitled *Principia Botanica; or, a Concise and Easy Introduction to the Sexual Botany of Linnaeus.*

Darwin, Robert Waring
May 30, 1766 – November 13, 1848
Litchfield, England – Shrewsbury, England
A wealthy physician, the son of Erasmus Darwin and father of Charles Darwin. He studied medicine at Edinburgh from 1784 to 1787, and took his M.D. at Leiden 1785. Although he was a Fellow of the Royal Society of London he was author of only one scientific paper and it was probably written with the help of his father. Charles Darwin did not think that he had much talent for science.

References: Tort in DD.

Darwin, Susan
October 3, 1803 – October 3, 1866
Shrewsbury, England – Shrewsbury, England
Older sister of Charles Darwin.

References: RBF.

Darwin, William Erasmus
December 27, 1839 – September 1, 1914
London, England – ?
First child of Charles and Emma Darwin. Observations on his behavior when very young were the basis of his father’s classic paper in *Mind* (1877). With his father’s assistance he became a partner in the Southampton and Hampshire Bank in 1861. Afterward his parents often visited him. Observations that he made on plants in his spare time were incorporated in Charles Darwin’s publications.

References: RBF.

Davidson Thomas
May 17, 1817 – October 14, 1885
Edinburgh, Scotland – London, England
Scottish paleontologist, an expert on fossil brachiopods.

References: GHG.

de Bary, [Heinrich] Anton
January 26, 1831 – January 19, 1888
Frankfurt am Main – Strassbourg, France
German mycologist, professor of Botany at Strassburg beginning in 1872. The father of modern mycology, he took his doctorate at Berlin in 1849. He introduced the word “symbiosis” in 1879.

References: Robinson in DSB.

de Candolle, Alphonse; see Candole, Alphonse de
De Candolle, Augustin Pyramus; see Candolle, Augustin-Pyramus de

De Filippi, Filippo
April 20, 1814 – February 9, 1867
Milan, Italy – Hong Kong
Italian zoologist, professor of zoology and comparative anatomy at Turin. An early supporter of Darwin, his lecture entitled *L’Uomo e le Scimie* was a milestone in attracting attention to evolution.
References: Landucci in DSB.

De la Beche, Henry Thomas (Sir)
February 10, 1796 – April 13, 1855
English geologist. Darwin refers to his work in the paper on boulders.
References: GHG.

Deshayes, Gerard Paul
May 24, 1797 – June 9, 1875
Nancy, France – Boran-sur-Oise, France
French paleontologist and malacologist.
References: Tobien in DSB.

De Vries, Hugo
February 16, 1848 – May 21, 1935
Haarlem, Netherlands – Lunteren, Netherlands
Dutch plant physiologist, professor at Amsterdam. He visited Darwin in the summer of 1877. Darwin cites him on numerous topics in plant physiology. Sympathetic with Darwin’s work on pangenesis, he later became the main rediscoverer of Mendel’s work on genetics.
References: van der Pas in DSB.

Dick, Sir Lauder; see Lauder, Thomas Dick

Delpino, Federico
December 12, 1833 – May 14, 1905
Chiavari, Italy – Naples, Italy
Italian botanist. He did extensive research on plant fertilization as a consequence of Darwin’s contribution, and was an important, but friendly, critic of pangenesis.
References: Landucci in DD, *Enciclopedia Italiana*.

Dieffenbach, Ernst
January 27, 1811 – October 1, 1855
Giessen, Germany – Giessen, Germany
German physician, naturalist and geologist, translator of the *Journal of Researches*. He provided Darwin with information about New Zealand.

Dohrn, [Felix] Anton
December 29, 1840 – September 26, 1909
Stettin, then part of Germany, now in Poland – Munich, Germany
German zoologist, a student of Ernst Haeckel. Inspired by Darwin’s work, he founded the great Zoological Station at Naples with Darwin’s enthusiastic encouragement. He made important contributions to systematics and evolutionary biology, most notably his principle of the succession of functions. He knew Darwin personally and they corresponded extensively.

Donders, Francisco Cornelius (Professor)
May 27, 1818 – Marcy 24, 1889
Tilburg, Netherlands – Utrecht, Netherlands
Dutch ophthalmologist, professor at Utrecht. At Darwin’s instigation he carried out experiments that are discussed in *The Expression of the Emotions*. He also advised Darwin on various other physiological matters including the sensitivity of plants.
References: Ter Laage in DSB.

Doubleday, Edward
October 9, 1810 – December 14, 1849
English entomologist, a specialist on Lepidoptera.
References: BAE.

Doubleday, Henry
July 1, 1809 – June 29, 1875
English entomologist, a specialist on Lepidoptera. There are several references to his work on butterflies in *The Descent of Man*. He is also cited in *Flowers*.
References: RD.

Douglas, John William
1814–1905
English entomologist, an expert on Hemiptera. Darwin cites him in respect to sexual selection.
References: DD.
Drummond, James
Baptized January 8, 1787 – March 26 or 27, 1863
Inverarity, Scotland – Hawthornden, Western Australia
Scottish botanist and plant collector who settled in Western Australia in 1829. He was superintendent of the government gardens until 1834.

Duchenne, Guillaume Benjamin Amand (Dr.)
September 17, 1806 – September 15, 1875
Boulogne-sur-Mer, France – Paris, France
French physician and physiologist. Darwin cites his work in *The Expression of the Emotions*.
References: EB13.

Duméril, Constant [André-Marie-Constant]
January 1, 1774 – August 14, 1860
Amiens, France – Paris, France
French vertebrate zoologist; father of Auguste Henri-Duméril.

Duméril, Auguste [Auguste-Henri-André]
November 30, 1812 – November 12, 1870
Paris, France – Paris, France
French vertebrate zoologist, son of André Marie Constant Duméril.

Dumont d’Urville, Jules Sébastien César
May 23, 1790 – May 8, 1842
Condé-sur-Noireau, France – near Meudon, France
French navigator and explorer.

References: EB13.

Dutrochet, René Joachim Henri (Marquis de Néons)
November 14, 1776 – February 4, 1847
Néon, France – Paris, France
French physician, zoologist and botanist, sometimes considered the founder of the cell theory. Darwin frequently refers to his publications in *Climbing Plants*.
References: Kruta in DSB.

Dzierzon, Johann (Pfarer)
January 16, 1811 – December 26, 1906
Lokowitz, Upper Silesia (now Poland) – Lokowitz, Poland
German apiculturist, originally a clergyman. He discovered parthenogenesis in bees. Darwin cited his work frequently.

Edwards, Henry
August 27, 1830 – June 9, 1891
Herefordshire, England – New York, New York, USA
English-born American systematic entomologist who was an actor by profession. An expert on Lepidoptera, he was a Fellow of the California Academy of Sciences and active in California until 1877, when he moved to New York.
References: RBF, Essig 1931.

Edwards, Frederick Erasmus
1799 – 1875
English paleontologist. Darwin used his specimens for the monograph on fossil Lepadidae.
References: GHG.

Egerton, Philip de Malpas (Baronet)
November 13, 1806 – April 5, 1881
English paleontologist, an expert on fossil fishes.
References: Bettany in DNB.

Ehrenberg, Christian Gottfried (Professor)
April 19, 1795 – June 27, 1876
Deliisch, near Leipzig, Germany – Berlin, Germany
German microscopist and zoologist, professor at Berlin. He examined Darwin’s specimens of dust and other materials from the *Beagle* expedition.
References: Tort in DD, Jahn in DSB.

Élie de Beaumont, Jean-Baptiste-Armand-Louis-Léonce
September 25, 1798 – September 21, 1874
Canon, Calvados, France – Canon, Calvados, France
French geologist and mining engineer, important to Darwin for his work on glaciers, volcanoes, and mountain-building. Beaumont maintained that mountain-building occurs as the result of the earth contracting as it cools, whereas Darwin attributed it to the injection of molten rock.
References: Birembaut in DSB, GHG.

Éliot, George – Pseudonym of Mary Ann Evans, later Mrs. J.W. Cross
November 22, 1819 – December 22, 1880
Warwickshire, England – Chelsea, England
English novelist and literary intellectual. She was part of the group of people associated with Erasmus Darwin in London and knew many distinguished persons. However, her cohabitation with George
Henry Lewes made her socially unacceptable to many.
References: EB13.

Eyton, Thomas Campbell
September 10, 1809 – October 25, 1880
English ornithologist, an expert on ducks. A friend of Darwin at Cambridge, they remained friends and corresponded, although Eyton did not support Darwin’s evolutionary theory. He wrote the anatomical section on birds in the Zoology of the Beagle voyage. Darwin cites him as an authority on hybridization.
References: Tort in DD, Fisher in ODNB.

Fabre, Jean-Henri
December 22, 1823 – October 11, 1915
Saint-Léons, Aveyron, France – Sérignan, Vaucluse, France
French entomologist and author of popular works on science. Darwin cites his works on insect behavior.
References: Tort in DD, Théodoridès in DSB.

Fabricius, Johann Christian
January 7, 1745 – March 3, 1808
Tornberg, Schleswig, Denmark – Kiel, Germany
Danish systematic entomologist, a pupil of Linnaeus.
References: NBG, Landin in DSB.

Falconer, Hugh
February 29, 1808 – January 31, 1865
Forres, Scotland – London, England
British botanist and vertebrate paleontologist. His untimely death caused Darwin considerable distress.
References: DHG, Challinor in DSB, EB13.

Farrer, Thomas Henry
June 24, 1819 – October 11, 1899
London, England – Abinger Hall, Dorking, England
English lawyer and civil servant, author of works on political economy. He was made a Baronet in 1883 and First Baron in 1893. He married Katherine Euphemia Wedgwood, daughter of Hensleigh and Fanny Wedgwood. Their daughter Ida (1854-1946) became the wife of Darwin’s son Horace in 1880. The Darwins often visited them. Darwin mentions Farrer’s research on the fertilization of plants, including orchids. Farrer excavated Roman ruins on his property and these are discussed in Darwin’s book on Worms.
References: EB13.

Fawcett, Henry
August 25, 1833 – November 6, 1884
Salisbury, England – Cambridge, England
English politician, political economist and philosopher, author of a Manual of Political Economy. He was accidentally blinded in 1858. He was a supporter of Darwin.
References: RBF, EB13.

Féru ssac, André (Baron de)
1786 – 1836
Chartron, France – Paris, France
French malacologist. Darwin cites an important article by him on cirripedes.
References: Tort in DD.

Filippi, Filippo de
1814 – 1867
Milan, Italy – Hong Kong
Italian zoologist
References: Landucci in DD.

Fiske, John
March 30, 1842 – July 4, 1902
Hartford, Connecticut, USA – Gloucester, Massachusetts, USA
American writer on historical, philosophical and scientific topics. Author of Outlines of Cosmic Philosophy, Excursions of an Evolutionist and other books he played an important role in making the work of Darwin and Spencer known in America.
References: EB13.

Fitch, Robert
October 21, 1802 – April 4, 1895
Pharmacist and geologist. He loaned Darwin specimens of fossil barnacles. These included a collection from Chalk of Norwich where he resided.

Fitton, William Henry (Dr.)
January 24, 1780 – May 13, 1861
Dublin, Ireland – London, England
Irish physician and geologist, an important stratigrapher.
References: GHG, Eyles in DSB, Torrens & Browne in ODNB.
Fitzgerald, Robert David
November 30, 1830 – August 12, 1892
Tralee, County Kerry, Ireland – Sydney, New South Wales, Australia
Irish naturalist who moved to Australia around 1856.
He was an authority on Australian orchids and author of a magisterial survey of them, *Australian Orchids* (1875-1894). He provided Darwin with much useful information.

Fitz-Roy, Robert (Captain, Vice-Admiral)
July 5, 1805 – April 30, 1865
English naval officer. He commanded the *Beagle* while Darwin was on board as his guest. Although a difficult person he was a superb sailor and had the respect and loyalty of his men. He published an account of the voyage, in addition to some papers on geography. He was very rigid and orthodox in his beliefs and publicly denounced Darwin’s evolutionary theory. During the voyage he suffered from bouts of depression. Ultimately he committed suicide.
References: GHG, Basala in DSB.

Fleming, John
January 10, 1785 – November 18, 1857
Kirkroads, near Bathgate, Linlithgowshire, Scotland – Edinburgh, Scotland
Scottish geologist and zoologist. Darwin read his *Philosophy of Zoology* and other works.
References: Page in DSB.

Flourens, Marie-Jean-Pierre
April 13, 1794 – December 8, 1867
Maureilhan, near Béziers, France – Montgeron, near Paris, France
French physiologist, Perpetual Secretary of the Académie des Sciences de Paris. He published a scathing denunciation of the *Origin of Species* in 1864. Darwin cites his work on animal intelligence.
References: Kruta in DSB.

Flower, John Wickham
August 11, 1807 – April 11, 1873
English geologist. Darwin used his specimens for research on fossil barnacles.
English physiologist, professor at Cambridge, and as such the leader of an important school. Huxley and he worked together to reform biological education. References: Geison in DSB, Geison 1978.

Fothergill, John
March 8, 1712 – December 26, 1780
English physician and botanist. Darwin read his *Philosophy of Natural History*. References: Moore in DNB, RD.

Fox, Henry Stephen
September 22, 1791 – October 13, 1846
Chatham, Kent, England – Washington, D.C., USA
English diplomat, Minister Plenipotentiary at Rio de Janeiro. References: Arbuthnot in DNB, Wright in ODNB.

Fox, William Darwin
1805 – 1880
Second cousin of Charles Darwin, and his closest friend at Cambridge University. He became Vicar of Delamere, Cheshire. Fox introduced Darwin to the study of beetles, and they kept up a lifetime correspondence. References: RBF.

Frankland, Edward (Professor)
January 18, 1825 – August 9, 1899
Churchtown, England – Golaa, Gudbrands-dalen, Norway
English chemist, professor at the Royal Institution. He was a friend and collaborator of Tyndall. He did the analytical work described in *Insectivorous Plants* and also provided CD with reagents for the experiments. He was knighted in 1897, partly in recognition of his work on the London water supply. References: RBF, EB13.

Freke, Henry (Dr.)
Died 1888
Irish eccentric physician and evolutionist, mentioned in the *Historical Sketch*. References: RBF, DD.

Gärtnert, Karl Friedrich von
May 1, 1772 – September 1, 1850

Göppingen, Germany – Calw, Württemburg, Germany
German botanist. An important student of plant hybridization, Darwin made considerable use of his publications. References: Tort in DD, Hoppe in DSB.

Galton, Francis
February 16, 1822 – January 17, 1911
Birmingham, England – Haslemere, Surrey, England
A cousin of Charles Darwin, he is noted for having been remarkably intellectually precocious. A gifted mathematician, he made important contributions to statistics, and helped Darwin by applying statistics to his data. He also studied psychology, and had Darwin fill out a questionnaire as part of a study on talent. His transfusion experiments on rabbits, designed to test Darwin’s hypothesis of pangenesis, gave negative results. He became a leader in the eugenics movement. References: Gridgeman in DSB.

Gaudry, Albert Jean
September 15, 1827 – November 27, 1908
Saint-Germain-en-Laye, France – Paris, France
French paleontologist. Gaudry was one of the founders of evolutionary paleontology. However, he believed that species are transformed under divine supervision, leading progressively to man. References: Laurent in DD, Bourdier in DSB.

Gegenbaur, Carl (Professor)
August 21, 1826 – June 14, 1903
Würzburg, Germany – Heidelberg, Germany
German zoologist, professor at Jena, then at Heidelberg. He was very influential in establishing an evolutionary approach to morphology, especially that of vertebrates. References: di Gregorio in DD, Coleman in DSB.

Geikie, Archibald
December 28, 1835 – November 10, 1924
Edinburgh, Scotland – near Haslemere, Surrey, England
Scottish geologist, professor at Edinburgh beginning in 1871, knighted in 1891. He should not be confused with his younger brother James. Darwin cites his work in *Worms*. References: EB13.

Geikie, James
August 23, 1839 – March 1, 1913
Edinburgh, Scotland – Edinburgh, Scotland
Scottish geologist, professor at Edinburgh beginning in 1882. He should not be confused with his older brother Archibald. Darwin cites his book Prehistoric Europe (1881) in Worms.
References: EB13.

Geoffroy Saint-Hilaire, Étienne-François
April 15, 1772 – June 19, 1844
Étampes, France – Paris, France
French zoologist. His work on comparative anatomy, with its notions of unity of type and the principle of connections, was highly influential. He was one of the founders of the modern science of teratology (abnormal development). In the 1830s he engaged in a very important debate with Georges Cuvier. As a result, Geoffroy’s ideas, which included the possibility of evolution, were supported by only a small minority of biologists. He is mentioned in the Historical Sketch in later editions of the Origin.

Geoffroy Saint-Hilaire, Isidore
December 1805 – November 10, 1861
Paris, France – Paris, France
French zoologist, son of Étienne Geoffroy Saint-Hilaire, whom he succeeded as professor at the Muséum d’Histoire Naturelle in 1841. Like his father he was interested in teratology, and his book on that topic profoundly influenced Darwin. Also of importance were his writings on geographical distribution and domesticated animals. Something of an evolutionist, he is mentioned in the Historical Sketch in later editions of the Origin.
References: Laurent in DD, Bourdier in DSB.

Gerstäcker, [Karl Eduard] Adolf
August 30, 1828 – June 20, 1895
Berlin, Germany – Greifswald, Germany
German zoologist, professor at Greifswald. He was the author of a very scholarly review on arthropods in the Handbuch der Zoologie (1863). Skeptical statements with respect to the dwarf males of cirripeds by an unidentified German zoologist have been attributed to him, but this seems most unlikely. There is no trace of that notion in the aforementioned work.
References: DBE.

Gibbon, Edward
April 27, 1737 (old style) – January 16, 1794
English historian, author of The Decline and Fall of the Roman Empire.
References: Womersly in DNB, Bury in EB13.

Gibbs, George
July 17, 1815 – April 9, 1873
Near Astoria, New York, USA – New Haven, Connecticut, USA
Ethnologist at the Smithsonian. He was an informant about emotional expression

Gilbert, Joseph Henry (Dr., Sir)
August 1, 1817 – December 23, 1901
Hull, Yorkshire, England – Rothampsted, Herts., England
English agricultural chemist, an expert on fertilization and plant nutrition. He advised Darwin on plant nutrition.
References: RD.

Gladstone, William Ewart
December 29, 1809 – May 19, 1898
Liverpool, England – Hawarden, Wales
British statesman of Scottish descent, four times Prime Minister. He visited Down with Huxley in 1876. He arranged for Wallace’s Civil List pension.
References: RBF, EB13.

Gmelin, Johann Georg
August 10, 1709 – May 20, 1755
Tübingen, Germany – Tübingen, Germany
German botanist and geographer who worked in Russia. He studied mutations in plants.
References: Kruta in DSB.

Gmelin, Samuel Gottlieb
July 4, 1744 – July 27, 1774
Tübingen, Germany – Achmetkent, Caucasus, Russia
German botanist and explorer, nephew of Johann Georg Gmelin.
References: Kruta in DSB.

Godwin, William
March 3, 1756 – April 7, 1836
English political writer, educated as a clergyman. His
book *Of Population* (1820) was of some interest to Darwin.
References: EB13.

Goethe, Johann Wolfgang von
August 28, 1749 – March 22, 1832
Frankfurt am Main, Germany – Weimar, Germany
Germany’s greatest poet, the author of *Faust*. A civil servant, he had broad scientific interests. He was particularly influential in the study of plant and animal morphology.
References: EB13

Gosse, Philip Henry
April 6, 1810 – August 23, 1888
Worcester, England – Devon, England
English naturalist, and author of popular scientific works, and more technical publications. He was important for Darwin’s work on orchid fertilization. His anti-evolutionary book *Omphalos* was much ridiculed. His son, Edmund Gosse, portrays him in his autobiographical novel *Father and Son*.
References: EB13.

Gould, Augustus Addison
April 23, 1805 – September 15, 1866
New Ipswich, New Hampshire, USA – Boston, Massachusetts, USA
American physician and malacologist.
References: Gifford in DSB.

Gould, John
September 14, 1804 – February 3, 1881
English ornithologist. Gould studied Darwin’s *Beagle* collections, giving important evolutionary implications, and also described the birds of the voyage.
References: Simpkins in DSB.

Gower, William Hugh
November 6, 1835 – July 30, 1894
Unknown – Tooting, London, England
English gardener, a foreman at Kew Gardens until 1865. He was an expert on orchids.
References: RD

Grant, Robert Edmund
November 11, 1793 – August 23, 1874
Edinburgh, Scotland – London, England
British zoologist, M.D. Edinburgh 1814. Grant was an important influence on Darwin during his Edinburgh period. Later he became a professor of zoology and comparative anatomy in London. A major Lamarckian, he published important works on sponges and other marine invertebrates. Evidently he published some of Darwin’s earliest work without due acknowledgment. Darwin had little if anything to do with him later in life, though Grant did dedicate a book to him. Darwin mentions him in the *Historical Sketch* in later editions of the *Origin*.
References: RBF.

Gray, Asa (Professor)
November 18, 1810 – January 30, 1888
Sauquoit, New York, USA – Cambridge, Massachusetts, USA
American botanist, professor at Harvard. After they had met in England, Darwin enlisted Gray’s assistance, and explained his evolutionary views to him. Gray was a major supplier of botanical information, especially in relation to biogeography, and they corresponded extensively. Gray supported evolution, opposing his colleague Louis Agassiz. However, he remained a devout theist, and tried to reconcile Darwin’s theories with Christian theology. Darwin rebutted Gray’s arguments in favor of design in the last chapter of the *Variation*. Darwin dedicated his book *The Different Forms of Flowers on Plants of the Same Species* to him.
References: Dupree in DSB.

Gray, George Robert
July 8, 1808 – May 6 1872
English zoologist, the younger brother of J.E. Gray. He wrote much of the text for John Gould’s work on the birds of the *Beagle* voyage.
References: RBF.

Gray, John Edward
February 12, 1800 – March 7, 1875
English zoologist, trained as a physician, a specialist on sponges. He worked in the British Museum beginning in 1824 and became Keeper of Zoology in 1840. He encouraged Darwin to monograph the Cirripedia.

Günther, Albrecht [Albert Carl Ludwig]
October 3, 1830 – February 1, 1914
Esslingen, Württemburg, Germany – Kew, England
German (naturalized British) systematic ichthyolo-
gist, a student of Johannes Müller in Berlin. He worked at the British Museum in London beginning in 1862, and provided Darwin with much information on fishes.

References: Tort in DD.

Gulick, John Thomas
March 13, 1832 – April 14, 1923
Waimea, Kauai, Hawaii – Honolulu, Hawaii
American missionary and naturalist. A major evolutionary biologist, he did classic work on the evolution of land snails in Hawaii. He visited Darwin at Down in 1872.

Gully, James Manby (Dr.)
March 13, 1808 – March 27, 1883
Kingston, Jamaica – ?
Physician, a hydrotherapist of whom Darwin was a patient. Darwin spent much time getting treatment at his establishment at Malvern.

References: RBF, Bose in DNB.

H

Haast, John Francis Julius von (Sir)
May 1, 1824 – August 15, 1887
Bonn, Germany – Wellington, New Zealand
German geologist and paleontologist who settled in New Zealand and became a professor at Canturbury. He provided Darwin with information for his book on *Worms*.

References: Anderson in DNB.

Haeckel, Ernst [Heinrich Phillip August] (Professor)
February 16, 1834 – August 9, 1918
Potsdam, Germany – Jena, Germany
German zoologist. Although trained as a physician he never practiced, and became a professor at Jena. An early convert to Darwinism, he soon developed his own version, and was a prolific writer of both scientific and popular works that were very influential. He was also a very successful teacher, with many eminent students. Although largely remembered for the aphorism stating that “ontogeny recapitulates phylogeny” the idea was by no means original with him but was largely derivative of the work of Fritz Müller, who in turn was profoundly influenced by Darwin. Haeckel was very controversial, and often offended people as a result of his criticisms of his colleagues and his opposition to established religion. Darwin expressed admiration for Haeckel’s work, and seems to have enjoyed Haeckel’s visits to his home at Down.

References: RBF, Bose in DNB.

Haldeman, Samuel Steman (Professor)
August 12, 1812 – September 10, 1880
Locust Grove, Pennsylvania, USA – Chickies, Pennsylvania, USA
American natural historian, geologist and philologist, professor at the University of Pennsylvania. Darwin refers to his support of evolution in the *Historical Sketch* in later editions of the *Origin*.

References: Harvey in *Dictionary of American Biography*.

Haller, Albrecht von
October 16, 1708 – December 12, 1777
Bern, Switzerland – Bern, Switzerland
Swiss physiologist. Darwin cites his work.

Hancock, Albany
December 26, 1806 – October 24, 1873
Newcastle upon Tyne, England – Newcastle upon Tyne, England
English invertebrate zoologist, collaborator with Joshua Alder. His main contributions were to the anatomy of brachiopods, mollusks and tunicates. He described the burrowing barnacle *Alcippe* (=*Trypetesa*) and corresponded extensively with Darwin about this and related animals. Darwin gave his *Beagle* voyage mollusk collections to him, but nothing seems to have come of that.

References: Newman 1993, Tort in DD, Boulger and Rees in ODNB.

Harvey, William Henry
February 5, 1811 – May 15, 1866
Summerville, Limerick, Ireland – Torquay, Devon, England
Irish systematic botanist, professor at University College, Dublin. Together with Darwin and others he signed a “memorial” on natural history museums in 1858.

References: Mitchell in DSB, RD.

Henslow, George (Reverend)
March 23, 1835 – December 30, 1925
Cambridge, England – Bournemouth, Hants, England
English botanist, popular writer, and educator. He was
Lecturer on Botany at St. Bartholowew’s Hospital, London from 1886 to 1890. The son of John Stevens Henslow, he was, like his father, a clergyman. He wrote some commentary on Darwin’s work that Darwin did not consider very accurate. His book entitled The Theory of Evolution of Living Things and the Application of the Principles of Evolution to Religion Considered as Illustrative of the Wisdom and Beneficence of the Almighty, published in 1873, was awarded the Actonian Prize for natural theology in 1872. The book attempted to reconcile evolution with theology.

References: RBD.

Henslow, John Stevens (Professor)
February 6, 1796 – May 16, 1861
Rochester, Kent, England – Hitcham, Suffolk, England

English clergyman and botanist. Professor of Botany at Cambridge University from 1825, he was Darwin’s most important teacher there. He arranged for Darwin to go on the Beagle voyage and took responsibility for the specimens that were sent home. He also described some of the plants from the voyage, and provided Darwin with information about plants. Together with Darwin and others he signed a “memorial” on natural history museums in 1858. Darwin wrote a biographical memoir of him.

References: Mathew in DSB.

Herbert, John Maurice
1808 – 1882

English judge. A friend of Darwin beginning as a student at Cambridge, he gave him a microscope in May, 1831.

References: RBF.

Herbert, William (Dr.)
January 12, 1778 – May 28, 1847

English naturalist and clergyman, Dean of Manchester. He was an early student of plant hybridization. He advised Darwin on that topic and Darwin refers to him frequently in his publications. On the basis of his hybridization experiments Herbert denied that there is a clear distinction between species and variety. Darwin mentions him in the Historical Sketch in later editions of the Origin.

References: Guimond in DSB.

Herschel, John (Sir)
March 7, 1792 – May 11, 1871
Slough, England – Hawkhurst, Kent, England

English astronomer and philosopher of science. During his Cambridge period Darwin read, and was much influenced by, his book A Preliminary Discourse on the Study of Natural Philosophy. Darwin visited him at the Cape of Good Hope. It was Herschel who characterized natural selection as “the law of higgledy-piggeldy.”

References: Evans in DSB.

Hildebrand, Friedrich (Professor)
April 6, 1835 – December 30, 1915
Köslin, Pomerania, Germany – Freiburg im Breisgau, Germany

German botanist, Professor at Freiburg. Darwin and he corresponded about floral biology.

References: Jahn, Geschichte der Biologie.

Hoek, Paulus Peronius Cato
1851 – 1914

Dutch invertebrate systematic zoologist, monographer of Challenger Expedition Cirripedia and Pycnogonida. He did major work on reproduction, anatomy, systematics and phylogenetics of Cirripedia.

Hofmann, Augustus Wilhelm von
April 8, 1818 – May 5, 1892
Giessen, Germany – Berlin, Germany

German chemist, Director of the Royal College of Chemistry in London from 1864, later professor at Berlin. He helped Darwin with experiments on insectivorous plants.

References: RBF, Lexikon der Naturwissenschaftler.

Hofmeister, Wilhelm
May 18, 1824 – January 12, 1877
Leipzig, Germany – Lindenu, near Leipzig, Germany

German botanist, professor at Heidelberg beginning in 1863, and at Tübingen from 1872. Major publications by him were important in modernizing botany. His work on plant movements relates to that of Darwin on climbing plants.

References: Proskauer in DSB.

Holland, Henry (Dr., Sir)
October 27, 1788 – October 27, 1873
English physician, physician in ordinary to Prince Albert and Queen Victoria. He was Darwin’s cousin. Darwin read his publications on medicine, such as *Medical Notes and Reflections* (1839) and often received information about medicine and physiology from him.

References: Berry in DNB, EB13.

Holmgren, Frithiof
October 22, 1831 – August 14, 1897
West Ny, Sweden – Uppsala, Sweden
Swedish physiologist, professor at Uppsala. His most important scientific work was on color vision. He played a major role in the arguments about vivisection in which Darwin participated.

References: RBF, Granit in DSB.

Hooker, Joseph Dalton (Sir)
June 30, 1817 – December 10, 1911
Halesworth, England – Sunningdale, England
English botanist, son of Sir William Hooker, whom he succeeded as Director of the Royal Botanical Gardens, Kew. Darwin and Hooker became close friends, and there is a vast correspondence between them. Darwin explained his evolutionary ideas to Hooker and they discussed them at great length. Hooker also supplied Darwin with a great deal of botanical information. He was one of the earliest supporters of Darwin’s evolutionary theories, and one of the most effective.

References: Desmond in DSB, L. Huxley 1918.

Hooker, William Jackson (Sir)
July 6, 1785 – August 12, 1865
Norwich, England – Kew, England
English systematic botanist and first Director of the Royal Botanical Gardens, Kew. He was the father of Joseph Dalton Hooker.

References: Allen in DSB.

Hope, [Frederick] William (Reverend)
January 3, 1797 – April 15, 1862
English entomologist, President of the Entomological Society of London in 1835 and 1846, and author of *The Coleopterist's Manual* (1837). Darwin knew him while still an undergraduate at Cambridge. He described some of the Coleoptera of the voyage of the *Beagle*.

References: BAE.

Hope, Thomas Charles
July 21, 1766 – June 13, 1844
Edinburgh, Scotland – Edinburgh, Scotland
Scottish chemist, professor of that subject at Edinburgh. He was a very popular teacher, and Darwin enjoyed his lectures.

References: Scott in DSB.

Horner, Leonard
January 17, 1785 – March 5, 1864
Edinburgh, Scotland – London, England
Scottish geologist. He was the father in law of Charles Lyell and the father of Leonora Horner (b. 1818), a family friend of the Darwins. In his 1861 address to the Geological Society he warmly recommended *The Origin of Species*.

References: Rudwick in DSB.

Howe, Samuel Gridley (Dr.)
November 10, 1801 – January 9, 1876
Boston, Massachusetts, USA – Boston, Massachusetts, USA
American physician and philanthropist. Director of the Perkins Institution for the blind, he educated the blind deaf-mute Laura Bridgman, in whom Darwin took considerable interest in relation to his work on facial expression.

References: EB 13.

Huber, François
July 2, 1750 – December 22, 1831
Geneva, Switzerland – Lusanne, Switzerland
Swiss entomologist, noteworthy for having done experimental work even though blind. Darwin cites the 1814 edition of his *Nouvelles Observations sur les Abeilles* (1792).

References: Guvot de Fère in NBG.

Huber, Pierre
1777 – 1840
Geneva, Switzerland – Yverdon, Switzerland
Swiss naturalist, the son of François Huber. Darwin cites his views on instinct.

References: Tort in DD.

Humboldt, Alexander von
September 14, 1769 – May 6, 1859
Berlin, Germany – Berlin, Germany
German geographer and explorer, who should not be confused with his older brother Wilhelm. His travel writings made a profound impression upon the
young Darwin, especially in his publications on South America. Darwin cites Humboldt’s works frequently. Humboldt expressed great admiration for Darwin’s Journal.

References: Gayet in DD, Biermann in DSB.

Hume, David

April 26, 1711 (old style) – August 25, 1776
Edinburgh, Scotland – Edinburgh, Scotland
Scottish philosopher. Darwin read his *Dialogues on Natural Religion*, a work that seriously challenged natural theology, in 1839. In *The Descent of Man* Darwin quotes his *Enquiry Concerning the Principles of Morals*.

References: EB13, Passmore in DSB.

Hunter, John

February 13, 1728 – October 16, 1793
Long Calderwood, Lanarkshire, Scotland – London, England
Scottish anatomist and physician. His collections formed the nucleus of the Hunterian Museum in London. Some of his works were edited and published posthumously by Richard Owen. Darwin cites him as an authority on anatomy and reproduction.

References: Dobson in DSB.

Hutton, Frederick Wollaston

November 16, 1836 – October 29, 1905
Gate Burton, Lincolnshire, England – New Zealand
British biologist and geologist. Hutton published one of the first reviews of *The Origin of Species* and it was a favorable one. In 1865 he emigrated to New Zealand, where he occupied influential positions and became the leading proponent of Darwinism there.

Hutton, James

June 3, 1726 – March 26, 1797
Edinburgh, Scotland – Edinburgh, Scotland
Scottish geologist. As author of *Theory of the Earth*, he was a major figure in the development of uniformitarianism.

References: Eyles in DSB.

Huxley, Thomas Henry

May 4, 1825 – June 29, 1895
Ealing, Middlesex, England – Hodslea, Sussex, England
English zoologist. Although known as “Darwin’s Bulldog” and widely considered the main popularizer of Darwinism in England, Huxley had his own agenda and was slow to embrace Darwin’s evolutionary ideas, including natural selection. Together with Darwin and others he signed a “memorial” on natural history museums in 1858.

Hyatt, Alpheus

April 5, 1838 – January 15, 1902
Washington, D.C. – Cambridge, Massachusetts
American paleontologist. He was a major Lamarckian. Darwin and he corresponded.

References: Tort in DD, Gould in DSB.

I

Ihering, Hermann von

October 9, 1850 – February 24, 1930
Kiel, Germany – Büdingen, Hessen, Germany
German malacologist and zoogeographer. He lived and worked in Brazil from 1880 to 1920.

References: DBE.

Innes, John Brodie

1817 – 1894
English clergyman, at Downe, 1846-1862.

J

Jaeger, Gustav

June 23, 1832 – May 13, 1917
Bürg/ Kocher, Germany – Stuttgart, Germany
German ichthyologist. Jaeger was a strong supporter of Darwin and defended him against the attacks of Wigand.

References: Rupp-Eisenreich and Tort in DD, DBE, EB13.

Jameson, Robert

July 11, 1774 – April 19, 1854
Leith, Scotland – Edinburgh, Scotland
Scottish geologist and professor of natural history at Edinburgh. Darwin attended his course and found the lectures so “incredibly dull” that he resolved never to study geology. Fortunately, the effect was only temporary.

References: Tort in DD, Eyles in DSB.

Jeffreys, John Gwyn

January 18, 1809 – January 24, 1885
Swansea, Wales – London, England
British malacologist. Author of *British Conchology*, he did important deep-sea research on the vessels *Lightning* and *Porcupine*, showing that life exists at greater depths than had been supposed.
References: Heppel in DSB.

Jenkin, [Henry Charles] Fleeming
March 23, 1833 – June 12, 1885
Kent, England – Edinburgh, Scotland
British engineer. (His name rhymed with lemming.) Darwin took Jenkin’s criticisms of his theory quite seriously, and consequently made some important changes.
References: Chipman in DSB.

Jenyns, Leonard, later Blomefield (the Reverend)
May 25, 1800 – September 1, 1893
Bath, Somerset, England – Bath, Somerset, England
Anglican priest and naturalist, Vicar of Swaffham Bulbeck, Cambridgeshire. He changed his surname on inheritance. He described the fishes of the *Beagle* voyage, and wrote a number of other significant publications on natural history. The brother in law of John Stevens Henslow, he wrote a *Memoir of John Stevens Henslow*, which contains reminiscences by Darwin. There are many letters between Jenyns and Darwin.
References: RBF.

Kant, Immanuel
April 22, 1724 – February 12, 1804
Königsberg, East Prussia – Königsberg, East Prussia
German philosopher. In *The Descent of Man* Darwin quotes him on duty and mentions his views on the number of human races or species.
References: Ellington in DSB.

Kelvin, William Thomson, Baron
June 26, 1824 – December 7, 1907
Belfast, Ireland – Netherhall, near Largs, Scotland
British physicist, professor and ultimately Chancellor at the University of Glasgow. His most important scientific work dealt with thermodynamics (the Kelvin scale is named after him) and electricity. With respect to Darwin, however, he is noteworthy for having calculated the age of the earth and concluded that it is much younger than Darwin and other geologists had believed. The premises for Kelvin’s proposal were false, but this was not discovered until the effects of radioactive decay were understood. Darwin rejected Kelvin’s chronology.
References: Buchwald in DSB, Burchfield 1975.

Kerner, Anton Joseph, Ritter von Marilaun
November 12, 1831 – June 21, 1898
Mautern, Austria – Vienna, Austria
Austrian botanist, professor at the University of Innsbruck, and an important pioneer in the study of plant ecology. Darwin wrote a preface to the English translation of his book, *Flowers and their Unbidden Guests*.
References: Tort in DD.

Keyserling, Alexander Andreevich
August 15, 1815 – May 8, 1891
Courland, Latvia – Raikül estate, Estonia
Also known under his Russian name, Alexandr Andreevich Keyserling, he did important work on the geology and paleobotany of the Urals. Darwin praised his protoevolutionary speculations in the *Historical Sketch* in later editions of the *Origin*.
References: Tikhomirov in DSB.

King, Philip Gidley
1817 – 1904
English naval officer. Son of Phillip Parker King. A mate on the *Beagle* while Darwin was on board, he settled in Australia.

King, Philip Parker (Rear Admiral)
December 13, 1793 – February 1856
Norfolk Island – Sydney, Australia
English naval officer and amateur naturalist. He commanded the *Adventure* while it accompanied the *Beagle* during its first voyage (1826-1830). Darwin visited him in Sydney and cited his work in his geological writings.
References: Garber 1994, Laughton in DNB.

Kingsley, Charles (The Reverend)
June 12, 1819 – January 23, 1875
Dartmoor, Devon, England – Eversley, Hampshire, England
English clergyman, appointed chaplain to Queen Victoria in 1859. He was also a poet and novelist, and from 1860 to 1869, he was professor of modern history at Cambridge University. Deeply interested in natural history, his children’s books *Water Babies* (1863) and *Madam How and Lady Why*...
(1869), were important in bringing evolutionary ideas and modern scientific thought to a broader audience. A somewhat liberal thinker in both religion and politics, he was a friend and supporter of both Darwin and Huxley.

References: EB13.

Kirby, William (The Reverend)

September 19, 1759 – July 4, 1850

Witnesham, Barnham, Suffolk, England – Barnham, near Ipswich, England

English entomologist and clergyman. A natural theologian, he was the author of one of the *Bridgewater Treatises* on that topic. Darwin made considerable use of the *Introduction to Entomology*, which Kirby coauthored with William Spence.

References: Tort in DD, Essig 1931.

Kowalevsky, Vladiimir Onufrievich

August 14, 1842 – April 28, 1883

Vitebsk region of what is now Latvia – Moscow, Russia

Russian vertebrate paleontologist, the brother of Alexander O. Kowalevsky. His work on the evolution of the horse was a major contribution to evolutionary studies. He made several visits to Darwin’s home and arranged for translations of his works into Russian.

References: Blacher in DSB.

Krauss, (Christian) Ferdinand (Friedrich von)

July 9, 1812 – September 15, 1890

Stuttgart, Germany – Stuttgart, Germany

German naturalist and plant collector.

References: BDB.

Krefft, Johann Ludwig Louis Gerhard von

February 17, 1830 – February 18, 1880

Brunswick, North Germany – Sydney, Australia

German botanist, Curator of the Australian Museum from 1864-74. He was one of Darwin’s informants about plant reproduction.

References: Garber, 1994, BAE.
Krohn, August David
1803 – February 26, 1891
St. Petersburg, Russia – Bonn, Germany
Russian physician and invertebrate zoologist. He lived in Bonn, Germany much of the time between his extensive trips to the Mediterranean and Atlantic, where he did important research on the anatomy and embryology of marine animals. He politely corrected Darwin’s work on the female reproductive system of barnacles.
References: RBF, Tort in DD.

Lamarck, Jean-Baptiste [Pierre Antoine de Monet], chevalier de
August 1, 1744 – December 18, 1829
Bazantin, Picardy, France – Paris, France
French naturalist. Lamarck is generally considered the most important pre-Darwinian evolutionist. Darwin himself, however, did not think at all highly of Lamarck’s views on that topic, and considered him a bad scientist. Darwin mentions him in the Historical Sketch in later editions of the Origin.
References: Laurent in DD, Burlingame in DSB.

Lankester, Edwin
April 23, 1814 – October 30, 1874
Melton, near Woodbridge, Suffolk – London, England
English physician, Professor of Natural History, New College London, editor of The Quarterly Journal of Microscopical Science. He was involved with the publication of Darwin’s barnacle monograph through his connection with the Ray Society.
References: Lester and Bowler 1995.

Lankester, Edwin Ray
May 15, 1847 – August 15, 1929
English zoologist, professor at London and Oxford, and Director of the British Museum (Natural History). The son of Edwin Lankester, he succeeded his father as editor of The Quarterly Journal of Microscopical Science and made it a major outlet for publications in evolutionary anatomy and embryology. He was introduced to Darwin while still quite young and became one of the most influential evolutionists of his time, thanks to his teaching, his popular writings, and his articles in reference works.
References: de Beer in DSB, EB13, Lester and Bowler 1995.

Latreille, Pierre-André
November 29, 1762 – February 6, 1833
Brives-la-Gaillarde, France – Paris, France
French zoologist, successor to Lamarck at the Paris museum of natural history. He was a specialist on insects, crustaceans and other arthropods, but also worked on other groups of animals.
References: Burkhardt in DSB.

Lauder, Thomas Dick (Sir), 7th Baronet
1784 – May 29, 1848
Edinburgh, Scotland – Edinburgh, Scotland?
Scottish naturalist and author. Darwin cites Lauder’s work in his paper on the Parallel Roads of Glen Roy and Lochaber, but refers to him as Sir Lauder Dick. The paper in the Transactions of the Royal Society of Edinburgh (1818; 9:1–164, pls. 1–7) uses the name Thomas Lauder Dick. It was published before he succeeded to the baronetcy in 1820.
References: EB13, GHG.

Lavater, Johann Kaspar
November 15, 1741 – January 2, 1801
Zurich, Switzerland – Zurich, Switzerland
Swiss clergyman. His well-known book on physiognomy is cited in Darwin’s Expression of the Emotions.
References: Tort in DD, EB13.

Lawrence, William (Sir)
July 16, 1783 – July 5, 1867
English surgeon. He has erroneously been treated as an early evolutionist, though his views on the scriptural interpretation of man were considered heretical.
References: Jaycna in ODNB.

Laxton, Thomas
Around 1830 – August 6, 1893
Tinwell, Rutland – Bedford, England
English nurseryman. He did some breeding experiments for Darwin.
References: RD.

Lecoq, Henri
April 18, 1802 – August 5, 1871
Avesnes, France – Clermont-Ferrand, France
French botanist, director of the gardens at Clermont-
Ferrand. Darwin mentions him in the Historical
Sketch in later editions of the Origin.
References: BDB.

Leggett, William Henry
February 24, 1816 – April 11, 1882
New York, New York, USA – New York, New York,
USA
American botanist, helped Darwin with botany.
References: RBF, BDB.

Leidy, Joseph (Professor)
September 9, 1823 – April 30, 1891
Philadelphia, Pennsylvania, USA – Philadelphia,
Pennsylvania, USA
American physician and naturalist, founder of verte-
brate paleontology in America. His work is cited in
Darwin’s barnacle monograph. They were intro-
duced to each other by Richard Owen during
Leidy’s visit to Europe in 1848.

Leighton, William Alport (The Reverend)
May 7, 1805 – February 25, 1889
Shrewsbury, Shropshire, England – Shrewsbury,
Shropshire, England
English clergyman and botanist, an expert on lichens.
In Flowers he is cited on cowslips and other top-
ics.
References: RD.

Lessona, Michele
September 20, 1823 – July 20, 1894
Venaria Reale (Torino), Italy – Torino, Italy
Italian zoologist, professor at Torino. He translated
four of Darwin’s books into Italian, and wrote a
book about him.
References: RBF, Encyclopeda Italiana di Scienze,
Lettre ed Arti.

Leuckart, Rudolf
October 7, 1822 – February 6, 1898
Helmstedt, Germany – Leipzig, Germany
German zoologist, professor at Giessen and later at
Leipzig. He was particularly distinguished for his
work on parasitology.
References: Tort in DD, Schadewaldt in DSB.

Lewes, George Henry
April 18, 1817 – November 28, 1878
London, England – Witley, near Godalming, Surrey,
England
English philosopher and literary intellectual. He and
the novelist George Eliot were friends of Erasmus
Alvey Darwin.
References: EB13.

Liebig, Justus von (Baron, Professor)
May 12, 1803 – April 10, 1873
Darmstadt, Germany – Munich, Germany
German chemist, professor at Giessen, Munich, and,
beginning in 1863, Berlin. Among ecologists he is
known for “Liebig’s law of the minimum.” Darwin
read and cited the English translation of his book
on agricultural chemistry.
References: Tort in DD, Holmes in DSB.

Lindley, John
February 5, 1799 – November 1, 1865
Catton, Near Norwich, England – Turnham Green,
Middlesex, England
English botanist, an expert on horticulture. D. Phil.,
München, 1832. From 1828 to 1860 he was pro-
fessor of Botany at London University. Beginning
in 1841 he was editor of The Gardeners’
Chronicle, a newspaper that published many of
Darwin’s notes and queries. He was also author of
several books on general and applied botany that
Darwin used and cited. Together with Darwin and
others he signed a “memorial” on natural history
museums in 1858.

Linnaeus, Carolus (Carl von Linné)
May 23, 1707 (new style) – January 10, 1778
Södra Råshult, Sweden – Uppsala, Sweden
Swedish naturalist, professor of botany at Uppsala,
and founder of the modern method of taxonomic
nomencalature. Darwin read and annotated many of
his works and thought very highly of him.
References: Lindroth in DSB.

Litchfield, Richard Buckley
1831 – 1903
Son-in-law of Charles Darwin. He married Henrietta
Emma Darwin in 1871.

Locke, John
August 29, 1632 – October 28, 1704
Wrington, near Buellton, Sommersetshire, England –
Otes, Essex, England
English philosopher. Darwin apparently read one of
He who understands baboon would do more toward metaphysics than Locke.”

References: Cranston in DSB.

Lombroso, Cesare

November 6, 1835 – October 19, 1909
Verona, Italy – Turin, Italy
Italian criminologist, professor at Turin.
References: Villa in DD, EB.

Longfellow, Henry Wadsworth

February 27, 1807 – March 24, 1882
Portland, Maine, USA – Cambridge, Massachusetts, USA
American poet. Darwin and he met in 1868.
References: RBF, Davidson in EB13.

Loudon, John Claudius

April 8, 1783 – December 1843
English agronomist, author of books on gardening and editor of periodicals. Darwin frequently refers to his publications with respect to botanical topics such as variation.
References: Tort in DD, RD.

Lovén, Sven

January 6, 1809 – September 3, 1895
Stockholm, Sweden – Stockholm, Sweden
Swedish zoologist and marine biologist.
References: Nyholm in DSB.

Lubbock, John (Sir, Lord Avebury)

April 30, 1834 – May 28, 1913
English banker. The son of the elder John Lubbock, he frequently visited Darwin at his home, and was encouraged by him to become a scientist. The author of scientific papers largely on arthropods and of popular books, he was one of Darwin’s major supporters.
References: Somkin in DSB.

Lubbock, John William (Sir)

March 26, 1803 – June 20, 1865
English banker. He built a house about one mile from Darwin’s at Downe.
References: RBF.

Lütken, Christian Frederik

October 4, 1827 – February 6, 1901
Danish carcinologist.
References: Wolff in Truesdale (1993)

Lyell, Charles (Sir)

November 14, 1797 – February 22, 1875
Kinnordy, Scotland – London, England
Leading uniformitarian geologist, trained as a lawyer. He had a major influence on Darwin’s work, especially through reading of his textbook during the voyage of the *Beagle*. He was influential in getting Darwin accepted by the London scientific establishment. With J.D. Hooker he arranged for the reading of the joint publication on natural selection by Darwin and Wallace in 1858. Lyell was rather reluctant to endorse evolution but did so after considerable hesitation.
References: Wilson in DSB, Laurent in DD.

McCormick, Robert

1800 – 1890
Senior Surgeon on the *Beagle* and its official naturalist, he felt aggrieved and left the vessel in 1832.
References: RBF.

Macculloch, John

October 6, 1773 – August 20, 1835
Guernsey, Channel Islands – Poltair, Cornwall, England
British chemist, physician and geologist. His important works include a book on *The Western Isles of Scotland* and a geological map of that country that was published posthumously. Darwin discusses his contributions in his writings on volcanic islands and glacial phenomena.
References: DHG, Eyles in DSB.

Mackintosh, James (Sir)

October 24, 1765 – May 30, 1832
Aldourie, near Inverness, Scotland – London, England
Scottish political philosopher and publicist. Darwin characterized him as the best converser on grave subjects whom he had ever met. Darwin read Mackintosh’s *Dissertation on the Progress of Ethical Philosophy* (1831) after returning from the
voyage. He quotes him on the moral sense in The Descent of Man.
References: EB13.

Macleay, Alexander
June 24, 1767 – July 19, 1848
Ross, Scotland – Sydney, Australia
British administrator, politician and naturalist. He was elected Fellow of the Linnean Society of London in 1794, and FRS in 1809. He moved to Australia in 1825, and was influential in supporting natural history research there.
References: Fletcher 1893, The Australian Encyclopaedia.

Macleay, George (Sir)
1809 – June 24, 1891
Third son of Alexander Macleay, and younger brother of William Sharpe Macleay. He contributed specimens to the museum in Sydney.
References: Fletcher 1893, The Australian Encyclopaedia.

Macleay, William John (Sir)
June 13, 1820 – December 7, 1891
Wick, County Caithness – Sydney, Australia
Scottish naturalist and politician. He accompanied his cousin, William Sharpe Macleay to Australia in 1839. He was a benefactor of biology in Australia.
References: Fletcher 1893, The Australian Encyclopaedia.

Macleay, William Sharpe
July 21, 1792 – January 26, 1865
London, England – Sydney, Australia
English zoologist and diplomat, second son of Alexander Macleay. He retired in Australia in 1839 where he was locally quite influential. Darwin spent a lot of time studying his works from the point of view of the principles of classification. He was a major advocate of the “quinarian” approach to systematics, which was numerological in rationale and attempted to arrange all organisms in groups of five circles. He was, of course, a creationist and continued to oppose evolution throughout his life.
References: Tort in DD, Fletcher 1893.

Magneudie, François
October 6, 1783 – October 7, 1855
Bordeaux, France – Sannois, France
French physiologist. Darwin mentions his cruel experiments in a letter on vivisection to the Times.
References: Grmek in DSB

Malthus, [Thomas] Robert (The Reverend)
February 13, 1766 – December 23, 1834
Near Guilford Surry, England – Bath, England
English economist, the first professor of that subject. As noted above, he went by his middle name. Malthus’s Essay on the Principle of Population was seminal in Darwin’s discovery of natural selection.

Mandeville, Bernard
Baptized November 20, 1670 – January 21, 1733
Rotterdam, Holland – Hackney, England
Dutch physician who later moved to London and spent the rest of his life there. An important social and economic theorist, he was the author of The Fable of the Bees: or, Private Vices, Publick Benefits, first published in 1724. Darwin is known to have read it.
References: Mandeville 1732.

Mantell, Gideon
February 3, 1790 – November 10, 1852
English surgeon and geologist, a pioneer in the study of dinosaurs.
References: EB13, Dean 1999.

Marsh, Othniel Charles
October 29, 1831 – March 18, 1899
Lockport, New York, USA – New Haven, Connecticut, USA
American vertebrate paleontologist, professor at Yale.
References: Shor in DSB, Schuchert & Le Vene 1940.

Martin Saint-Ange, Gaspard Joseph
1803 – 1888
Nice, France – Paris, France
French zoologist. His was one of the few important works on cirripedes before that of Darwin.
References: Tort in DD.

Martineau, Harriet
June 12, 1802 – June 27, 1876
Norwich, England – Near Ambleside, Westmorland, England
English writer. She published short stories and novels and wrote extensively on religious, philosophical, economic and political matters. She was an
acquaintance of Darwin and friend of his brother.
References: EB13.

Marx, Karl
May 5, 1818 – March 14, 1883
Trier, Prussian Rhineland – London, England
German political philosopher. That he wanted to dedicate his book *Das Kapital* to Darwin is a myth.
References: Cohen in DSB.

Masters, Maxwell, Tylden
April 15, 1833 – May 30, 1907
Canterbury, Kent, England – Ealing, Middlesex, England
English physician and botanist. Darwin cites his *Vegetable Teratology* (1869) in *Flowers*.
References: RD.

Matthew, Patrick
October 20, 1790 – June 8, 1874
Near Scone, Perth, Scotland – Gourdie Hill, Perthshire, Scotland
Scottish writer on agricultural topics. His *Naval Timber and Arboriculture* (1832) to some extent anticipated the principle of natural selection, justifying Darwin’s mention of it in the *Historical Sketch* in later editions of the *Origin*.
References: Tort in DD, RD.

Mayo, Herbert
April 3, 1796 – May 15, 1852
London, England – Bad Weilbach, Germany
English surgeon, neurophysiologist and anatomist.
After the return from his voyage, Darwin read Mayo’s *The Philosophy of Living* (1837, 1838).
References: LeFanu in DSB.

Mendel, Johann Gregor
July 22, 1822 – January 6, 1884
Heinzendorf, Austro-Hungarian Empire – Brno, Austro-Hungarian Empire
Moravian natural scientist, posthumously declared the founder of modern genetics. Although he is often characterized as a “monk” his responsibilities were mainly those of a teacher and administrator. Darwin evidently heard of Mendel’s work, but did not read it.
References: Vickery in DSB.

Meldola, Raphael
July 19, 1849 – November 16, 1915
English entomologist, an important contributor to the study of mimicry. He translated Weismann’s *Studies in the Theory of Descent*, for which Darwin wrote a brief preface (1852).
References: RBF.

Mill, John Stuart
May 20, 1806 – May 8, 1873
London, England – Avignon, France
English philosopher and political economist. His epistemology became part of the debates about evolution.
References: EB13.

Miller, Hugh
October 10, 1802 – December 23, 1856
Cromarty, Scotland – Portobello, Scotland
Scottish stonemason, geologist and popular writer, author of *The Old Red Sandstone* (1841) and *Footprints of the Creator* (1849). He opposed the “development hypothesis” as put forth by Robert Chambers.
References: Rudwick in DSB, EB13.

Milne, David (later David Milne Home)
January 22, 1805 – September 19, 1890
Inveresk, Scotland – Milne-Graden, near Coldstream, Berwickshire, England
Scottish lawyer and geologist. He was an important critic of Darwin’s work on the parallel roads of Glen Roy.
References: Tort in DD, Roy in ODNB.

Milne Edwards, Alphonse
October 13, 1835 – April 21, 1900
Paris, France – Paris, France
French zoologist and paleontologist, son of Henri Milne-Edwards.
References: Tort in DD, GHG.

Milne Edwards, Henri
October 23, 1800 – July 29, 1885
Bruges, (now Belgium) – Paris, France
French zoologist of English ancestry. He became a very influential professor at Paris. Milne-Edwards was the author of many important works, including a monograph on the Crustacea that was a major source for Darwin. Darwin dedicated a volume of his cirripede monograph to him.
References: Anthony in DSB, Tort in DD.
Mivart, St. George Jackson
November 30, 1827 – April 1, 1900
English comparative anatomist, he accepted evolution but opposed Darwin’s views. A convert to Roman Catholicism he alienated himself from both the scientific community and the church, and was excommunicated. By rebutting Mivart’s arguments Darwin was able to show the strength of his theory.
References: Gruber in DSB.

Moggridge, John Traherne
March 8, 1842 – December 24, 1874
Woodfield, England – Mentone, France
English entomologist and botanist, author of Contributions to the Flora of Mentone. He extended Darwin’s work on orchids, and sent him specimens and information, which Darwin incorporated in later publications.
References: RD, BDB.

Mohl, Hugo von
April 8, 1805 – April 1, 1872
Stuttgart, Germany – Tübingen, Germany
German botanist, professor at Tübingen. Darwin cites his publications in works on floral biology and climbing plants.
References: DD, BDB.

Monboddo, Lord; See Burnett, James

Moquin-Tandon, Alfred
May 7, 1804 – April 15, 1863
Montpellier, France – Paris, France
French naturalist. A pupil of A. P. de Candolle, he received his Dr. Sci. at Montpellier in 1826. Director of the botanic garden of Touluse 1834-1853, he was subsequently professor of botany at the Faculté de Médecine, Paris. His work on plant teratology and variation was of considerable interest to Darwin.
References: Tort in DD.

Morley, John (Viscount)
December 24, 1838 – September 23, 1923
English liberal statesman and author, editor of the Fortnightly Review from 1867 to 1883. A philosophical writer, he reviewed Descent. Together with Gladstone and others he visited Darwin at Down House.
References: EB 13.

Morse, John
February 19, 1810 – January 7, 1886
English paleontologist, professor of geology, University College, London 1855-1877. He described Darwin’s fossil brachiopods from the Falkland Islands.
References: RD, GHG.

Müller, [Friedrich] Max
December 6, 1823 – October 28, 1900
Dessau, Germany – Oxford, England
German, later naturalized English, philologist. He was on the faculty of Oxford University. He was opposed to, and ridiculed, much of the evolutionary thinking about language at the time.
References: Tort in DD, Fynes in DNB.

Müller, Fritz [Johann Friedrich Theodor]
March 31, 1822 – May 27, 1897
Windischholzhausen, Thuringia, Germany – Blumenau, Brazil
German naturalist. He became a political refugee in Brazil in 1852. One of Darwin’s most important supporters, Müller is best remembered for his discovery of Müllerian mimicry. He was most unusual among Darwin’s contemporaries in having an excellent understanding of natural selection. His book Für Darwin extended Darwin’s ideas on the relationship between ontogeny and phylogeny, and was the first application of the theory of recapitulation to evolutionary biology. Much of his early systematic and evolutionary work was based upon Crustacea, including barnacles. Darwin arranged for Müller’s book to be translated into English and
wrote a preface to the translation; he also arranged for the publication of many of Müller’s papers in *Nature*.

Müller, [Heinrich Ludwig] Hermann

September 23, 1829 – August 25, 1883

Mühlberg, Thuringia, Germany – Prad, Germany

German botanist, younger brother of Fritz Müller. He received his doctorate at Berlin, and subsequently was a high school teacher at Lippstadt; hence he is sometimes referred to as “Hermann Müller von Lippstadt.” His work on plant fertilization was of great importance to Darwin, who wrote a preface to the translation of one of his books.

References: RBF.

Müller, Johannes [Peter]

July 14, 1801 – April 28, 1858

Colblenz, Germany – Berlin, Germany

German physiologist, professor at Berlin. Darwin made considerable use of the English translation of his textbook.

References: Steudel in DSB.

Müller, Otto Frederick

March 2, 1730 – December 26, 1784

Copenhagen, Denmark – Copenhagen, Denmark

Danish microscopist and naturalist, professor of botany at the University of Copenhagen. Of interest in respect to Darwin because of his work on systematics of Crustacea.

References: BDB.

Murchison, Roderick Impye (Sir)

February 19, 1792 – October 22, 1871

Tarradale, Scotland – London, England

Scottish geologist, a leading stratigrapher. Darwin refers to his work in a paper on boulders.

References: Rudwick in DSB.

Murray, John III

April 16, 1808 – April 2, 1892

Darwin’s publisher for his later works.

References: EB 13, DNB.

Murray, John (Sir)

March 3, 1841 – March 16 1914

Coburg, Ontario, Canada – Kirkliston, Scotland

British oceanographer, a scientist on the *Challenger* expedition and editor of its *Reports*. He challenged Darwin’s ideas on coral reefs.

References: Burstyn in DSB.

Nägeli, Carl Wilhelm von

March 27, 1817 – May 10, 1891

Kilchberg, near Zürich, Switzerland – München, Germany

German botanist, a professor at Freiburg im Breisgau and then München. Not considering natural selection very important, he tried to develop his own mechanico-physiological theory. He also worked on hybridization, and is of some interest in having read Mendel’s publications but not considered them very important.

References: Olby in DSB.

Naudin, Charles

August 14, 1801 – March 19, 1899

Autun, France – Antibes, France

French botanist who worked at the natural history museum in Paris. He was an important student of plant hybridization. Darwin mentions him in the *Historical Sketch* in later editions of the *Origin*.

References: Tort in DD, Coleman in DSB.

Neumayr, Melchior

October 24, 1845 – January 29, 1890

Munich, Germany – Vienna, Austria

German paleontologist, and professor at Vienna beginning in 1873. His work on mollusks was important in showing gradual transformation of species in the fossil record. He was a strong supporter of Darwin.

References: Tobien in DSB, GHG.

Newman, Edward

May 13, 1801 – June 12, 1876

Hampstead, England – Peckham, England

English businessman and amateur entomologist, an expert on Coleoptera. He described some of Darwin’s *Beagle* specimens.

References: BAE.

Newport, George

July 4, 1803 – April 7, 1854

English surgeon, entomologist and embryologist.

References: Clarke in DSB.
Newton, Alfred
June 11, 1829 – June 7, 1907
Geneva, Switzerland – Cambridge, England
English ornithologist, professor of zoology and comparative anatomy at Cambridge University from 1866-1907. He was an important informant on birds, especially with respect to sexual selection. References: Tort in DD, EB13.

Nilsson, Sven
1787 – 1883
Landskrona, Sweden – Lund, Sweden
Swedish naturalist, director of the zoological museum in Stockholm. He provided Darwin with information about growth of reindeer antlers for Descent. References: RBF.

Ogle, William
1827 – May 16, 1905
English physician, physiologist and botanist, lecturer at St. George’s Hospital. Ogle provided material for Variation. He translated Kerner’s Flowers and their Unbidden Guests, for which Darwin wrote an introduction. Darwin was much interested in Ogle’s translation of Aristotle’s De Partibus Animalium. References: RD.

Oken, Lorenz
August 1, 1779 – August 11, 1851
Bohlsbach bei Offenburg, Baden, Germany – Zurich, Switzerland
German zoologist. Oken was one of the leaders of the mystical movement called Naturphilosophie and was first to publish the vertebral theory of the skull. There is no evidence of his writings having had any direct or significant influence on Darwin’s work, but he had a profound influence upon Richard Owen and other idealistic morphologists. Oken is perhaps best known in the English-speaking world for the translation of his Lehrbuch der Naturphilosophie which Darwin read, or at least looked into, but did not annotate. In the Historical Sketch in the sixth edition of the Origin, Darwin erroneously states that Oken was an evolutionist. Actually Oken believed in spontaneous generation. References: Klein in DSB, Ghiselin 2005.

Oliver, Daniel (Professor)
February 3, 1830 – December 21, 1916
Newcastle, Northumberland, England – Kew, Surrey, England
English botanist, on the staff of the Royal Botanic Garden at Kew. Professor of botany at University College London, 1861-88. He was one of Darwin’s major informants about floral biology and also advised him about plant taxonomy. References: RD.

Orbigny, Alcide d’
September 6, 1802 – June 30, 1857
Couéron, near Nantes, France – Pierrefitte, near Paris, France
French paleontologist. He travelled extensively in South America from 1831-1836, contemporaneously with Darwin, although they did not meet. An extreme catastrophist, he believed that the succession of fossils reflected a series of extinctions and special creations. D’Orbigny identified fossil shells from Darwin’s collections made in South America. References: Laurent in DD, Tobien in DSB.

Owen, Richard (Professor, Sir)
July 20, 1804 – December 18, 1892
English anatomist. Sometimes called the “English Cuvier,” he was Hunterian Professor at the Royal College of Surgeons, and later head of the British Museum (Natural History). Owen described the fossil mammals of the Beagle voyage and provided Darwin with a great deal of advice. Their relationship deteriorated beginning at the time of the publication of The Origin of Species, Owen becoming one of Darwin’s main opponents, and Darwin came to detest him. He was involved in frequent controversies with Thomas Henry Huxley, and is said to have coached Bishop
Wilberforce in preparation for their celebrated debate at Oxford. Darwin discusses him at some length in versions of the *Historical Sketch* in later editions of the *Origin*.

P

Packard, Alpheus Spring
February 19, 1839 – February 14, 1905
Brunswick, Maine, USA – Providence, Rhode Island, USA
American entomologist, who also worked on a variety of other scientific topics including Crustacea. A student of Louis Agassiz, he was a neolamarckian, and published a book about Lamarck.
References: Tort in DD, Norland in DSB.

Paget, James (Sir)
January 11, 1814 – December 30, 1899
English surgeon and pathologist. He was an important informant for Darwin’s work on emotional expression.
References: EB13.

Paley, William
July, 1743 – May 25, 1805
Peterborough, England – Lincoln, England
English clergyman, a tutor at Christ’s College from 1771 to 1774. As a student Darwin (who occupied the same rooms that Paley had) greatly admired his writings on natural theology. Later he remarked that Paley’s logic was sound but his premises were questionable.
References: Thiry in DD, Rodney in DSB.

Pallas, Peter Simon
October 3, 1741 – September 20, 1811
Berlin, Germany – Berlin, Germany
German naturalist who worked mainly in St. Petersburg, Russia. His writings were important for Darwin’s work on variation and domestication.
References: Tort in DD, Esakov in DSB.

Pander, Christian Heinrich
July 12, 1794 – September 22, 1865
Riga, Latvia, Russia – Saint Petersburg, Russia
Latvian embryologist, anatomist and paleontologist of German descent. Darwin knew of his proto-evolutionary speculations through secondary sources and mentioned him in the *Historical Sketch* in later editions of the *Origin*.
References: RBF, Bullough in DSB.

Pfeffer, Wilhelm Friedrich Philipp
March 9, 1845 – January 31, 1920
Grebenstein, Germany – Leipzig, Germany
German botanist, professor at Basel, Tübingen and Leipzig. He was an important supporter of Darwin’s views on plant movement.
References: Robinson in DSB.

Philippi, Rudolph Amandus
September 14, 1808 – July 23, 1904
Charlottenburg, near Berlin, Germany – Santiago, Chile
German naturalist, a teacher at Cassel until forced to leave for political reasons. After immigrating to Chile in 1851 he became professor of botany and zoology and head of the National Museum. He provided Darwin with specimens of fossil barnacles. In *The Origin of Species*, Darwin cites his prize-winning monograph on the paleontology of Sicily.
References: McLellan 1927.

Phillips, John (Professor)
December 25, 1800 – April 24, 1874
English geologist, ultimately professor at Oxford. Darwin refers to his work in his paper on boulders.
References: Edmonds in DNB.

Pictet de la Rive, François Jules
September 27, 1809 – May 15, 1872
Geneva, Switzerland – Geneva, Switzerland
Swiss zoologist and paleontologist.
References: RBF.

Planchon, Jules-Émile
March 21, 1823 – April 1, 1888
Ganges, France – Montpellier, France
French botanist, professor at Montpelier. Darwin refers to his work in publications on heterostyly.
References: BDB.

Playfair, John
March 10, 1748 – July 20, 1819
Benvie, Scotland – Edinburgh, Scotland
Scottish geologist. A major proponent of uniformitarianism in geology, he was author of *Illustrations of the Huttonian Theory of the Earth*.
References: Challenor in DSB.
Playfair, Lyon (Baron)
May 21, 1818 – May 29, 1898
Chuar, Bengal, India – London, England
English chemist.
References: Farrar in DSB.

Poirot, Jean Louis Marie
1755 – April 7, 1834
Saint Quentin, France – Paris, France
References: Levot in NBG.

Poli, Giuseppe Saverio
October 28, 1746 – April 7, 1825
Molfetta, Italy – Naples, Italy
Italian physicist and natural historian, professor at Naples. His book on the Testacea of the Kingdom of the Two Sicilies was an important source for Darwin’s barnacle work.
References: Castellani in DSB.

Powell, Baden (Reverend)
August 22, 1796 – June 11, 1860
English mathematician and physicist, professor at Oxford. He was the father of Lord Baden Powell, founder of the scouting movement. In the Historical Sketch in later editions of the Origin Darwin cites his essay on the Unity of Worlds in support of the idea that the origin of new species is a natural phenomenon.
References: RBF, Fox in DSB.

Preyer, William
July 4, 1847 – July 15, 1897
England – Wiesbaden, Germany
English-born physiologist who immigrated to Germany in 1857. He wrote some early biographical pieces on Darwin. Author of Die Seele des Kindes (1882), he was an important developmental psychologist.
References: Colp 1983.

Price, John
June 3, 1803 – October 14, 1887
Pwll-y-Crochen, Colwyn Bay, Denbighshire, England – Chester, Cheshire, England
English botanist. He sent Darwin specimens of the insectivorous plant Utricularia.
References: RBF, RD.

Prichard, James Cowles
February 11, 1786 – December 22, 1848
English ethnologist. His work on human races and variability was of considerable interest to Darwin, who studied his Researches into the Physical History of Man.
References: Stocking 1973, introductory essay to reprint of Researches into the Physical History of Man (Prichard 1813).

Prichard, Charles (Rev.)
February 29, 1808 – May 28, 1893
English astronomer and educator, appointed Savilian Professor of Astronomy at Oxford in 1870. He was the founder and Headmaster of Clapham Grammar School (1834–1862), which Darwin’s sons, with the exception of William, attended.
References: RBF; Meadows in DSB.

Quatrefages de Bréau, Jean-Louis-Armand de
February 10, 1810 – January 12, 1892
Berthezème, France – Paris, France
French invertebrate zoologist and anthropologist. He was basically a follower of Milne Edwards. He was opposed to evolution and maintained that human beings form a distinct kingdom.
References: Tort in DD, Limoges in DSB.

Quekett, John Thomas
August 11, 1815 – August 20, 1861
Langport, Somerset, England – Pangbourne, Berkshire, England
English microscopist, Professor of Histology at the Royal College of Surgeons from 1852. He was an expert on fossil plants.
References: RD.

Quetelet, Adolphe
February 10, 1810 – January 12, 1892
Ghent, Belgium – Brussels, Belgium
Belgian mathematician. He championed statistical research and made important contributions to the study of human populations.
References: Tort in DD, Freudenthal in DSB, EBB.
Rafinesque, Constantine Samuel
October 22, 1783 – September 18, 1840
Galata, near Constantinople, Turkey – Philadelphia, Pennsylvania, USA
French-American naturalist and archaeologist.
Darwin mentions him in the Historical Sketch in later editions of the Origin.
References: Ewan in DSB.

Ralfs, John
September 13, 1807 – July 14, 1890
English surgeon and botanist, author of British Phanerogamous Plants and Ferns (1839) and British Desmidae (1848). He sent Darwin specimens of Pinguicula and Utricularia for research on insectivorous plants.
References: RBF, RD.

Ramsay, Andrew Crombie (Professor, Sir)
January 31, 1814 – December 9, 1891
Glasgow, Scotland – Beaumaris, Wales
British geologist, important to Darwin for theories on glaciation and origins of continents and oceans.
References: Tort in DD, Beckinsale in DSB, EBB.

Rengger, Johann Rudolph
1795 – 1832
Baden, Switzerland – Baden, Switzerland
Swiss zoologist. Darwin occasionally cites his work on South American mammals.
References: Tort in DD.

Reynolds, Joshua (Sir)
July 16, 1723 – February 23, 1792
English painter, eminent for his portraits. He was President of the Royal Academy. Darwin was interested in his writings on aesthetics and also referred to his views on facial expression.
References: Tort in DD, EB 13.

Riley, Charles Valentine
September 18, 1843 – September 14, 1895
Chelsea, England – Washington, D.C., USA
English-born entomologist who moved to the United States at age 17. He was State Entomologist of Missouri and later Entomologist to the Bureau of Agriculture.

Rivers, Thomas
December 27, 1798 – October 17, 1877
Sawbridgeworth, Herts, England – Sawbridgeworth, Herts, England
References: RD, RF.

Roget, Peter Mark
January 18, 1779 – September 12, 1869
English physician and philologist, best remembered for his Thesaurus. He was important for Darwin because of his Bridgewater Treatise of 1833-1834, entitled Animal and Vegetable Physiology Considered with Reference to Natural Theology, which was adaptationist but not evolutionary.
References: Murray in ODNB.

Rolleston, George
July 30, 1829 – June 16, 1881
English anatomist, professor at Oxford. He supported Huxley in the dispute with Owen over man’s place in nature.
References: Geison in DSB.

Romanes, George John
May 2, 1848 – May 23, 1894
Kingston, Ontario, Canada – Oxford, England
English zoologist and comparative psychologist. He was a close associate of Darwin and his work on the behavior and nervous organization of animals was strongly influenced by Darwin’s work on plants. Darwin turned much of his material on behavior over to Romanes, who published a posthumous Essay on Instinct as an appendix to one of his books. Romanes published extensively on evolutionary theory. His major publications include Animal Intelligence and Darwin and After Darwin.
References: Tort in DD, Life and Letters, Lesch in DSB.

Rosas, Juan Manuel (General)
March 30, 1793 – March 14, 1877
Buenos Aires, Argentina – Swaythling, near Southampton, England
Argentine cattleman and dictator from 1835 to 1852. He helped Darwin with his travel arrangements. In 1852 he became a refugee in England and was met by Darwin at Southampton.
References: RBF.

Royer, Clémence
April 28, 1830 – 1902
Nantes, Brittany, France – Neuilly-sur-Seine, France
French feminist, social philosopher, and popularizer of scientific ideas. A Lamarckian and social Darwinist, she produced the first French translation (1862) of *The Origin of Species*. Darwin was displeased with this translation, partly because her introduction and footnotes were critical of the work, and partly because of her clumsy efforts to improve upon the original.
References: Blanckaert in DD, Harvey 1997.

Ruck, Amy Richenda
1850 – 1876
References: RBF.

Ruskin, John
February 8, 1819 – January 20, 1900
English art critic and writer. Darwin visited him while vacationing in the Lake District.
References: Frederick Harrison in EB13.

Rütimeyer, Karl Ludwig
February 26, 1825 – November 25, 1895
Biglen, Bern Canton, Switzerland – Basel, Switzerland
Swiss paleontologist, professor at Basel. His work on fossil mammals supported evolution, but he rejected natural selection.
References: Nelson in DSB.

Sabine, Edward (Sir)
October 14, 1788 – June 26, 1883
Dublin, Ireland – Richmond, Surrey, England
Irish geophysicist and explorer. He was somewhat manipulative, and his machinations with respect to
the award of the Copley Medal to Darwin created a minor scandal.
References: Rheingold in DSB.

Sachs, Julius von (Professor)
October 2, 1832 – May 29, 1897
Breslau, Germany – Würzburg, Germany
German botanist, studied in Prague, professor of botany at Freiburg 1867-1868, subsequently professor of botany at Würzburg. He was an important critic of Darwin’s work on plant physiology. Darwin’s research in that area has survived the criticism very well. Sachs also criticized various other aspects of Darwin’s work.
References: Tort in DD, Bopp in DSB.

Saint-Hilaire, Auguste de
October 4, 1779 – September 30, 1853
Orléans, France – Loiret, France
French botanist, professor at Paris. He collected extensively in Brazil. Darwin studied his botanical text book and mentioned his views on morphology in the *Origin*.
References: Guerra in DSB.

Sanderson See Burdon-Sanderson

Saporta, Louis Charles Joseph Gaston, Marquis de
July 28, 1823 – January 26, 1896
St. Zacharie, France – St. Zacharie, France
French paleobiologist. He and Darwin corresponded about botanical matters.
References: Stockmans in DSB.

Say, Thomas
June 27, 1787 – October 10, 1834
Philadelphia, Pennsylvania, USA – New Harmony, Indiana, USA
American naturalist, considered the father of American Entomology and author of books on entomology and conchology. His travels led to important contributions to the study of the American fauna.
References: Shor in DSB.

Schaffhausen, Hermann Joseph
1816 – 1893
Koblenz, Germany – Bonn, Germany
German physician and anthropologist. Darwin mentions him in the *Historical Sketch* in later editions
of the Origin.
References: RBF, I. Jahn Geschichte der Biologie.

Schleiden, [Jacob] Matthias
April 5, 1804 – June 23, 1881
Hamburg, Germany – Frankfurt am Main, Germany
German botanist, professor at Jena, afterward at Dorpat. He was one of the founders of the cell theory. Darwin read and made use of his works on plants.
References: Klein in DSB.

Sclater, Philip Lutley
November 4, 1829 – June 27, 1913
English ornithologist and Secretary of the Zoological Society of London. In 1858 he published an important paper on the biogeography of birds. He was an important source of information for Darwin, who often visited him. Darwin thanks him for reading the chapters on birds and mammals in the manuscript of *The Descent of Man*.
References: Austin in DSB.

Schleicher, August
February 19, 1821 – December 6, 1868
Meiningen, Germany – Jena, Germany
German philologist, professor at Jena. A colleague of Ernst Haeckel, he was stimulated by him to write a short book entitled *Die Darwinsche Theorie und die Sparachwissenschaft* (1863), which compared the evolution of species to that of languages. It was later translated into English.
References: EB13.

Scott, John
1836 – June 10, 1880
Denholm, Scotland – Garvald, East Lothian, Scotland
Scottish gardener and botanist, trained at Edinburgh. While still at Edinburgh he did important experimental work on floral biology. Darwin recognized his talent and encouraged him. He immigrated to India, where he became Curator of the Botanic Garden, Calcutta, and from there sent Darwin such publications as his *Manual of Opium Husbandry*. He was also an important source of information about emotional expression and other matters.
References: Tort in DD, RD.

Scrope, George
March 10, 1797 – January 19, 1876
English geologist. He was an important authority on volcanoes.
References: Page in DSB, GHG.

Sedgwick, Adam (Professor, Reverend)
March 22, 1785 – January 27, 1873
Dent, Yorkshire – Cambridge, England
Geologist, Professor of Geology at Cambridge University. He taught Darwin a lot of geology, especially during a field trip to Scotland in 1831. He was strongly opposed to evolution.
References: Rudwick in DSB.

Semper, Carl Gottfried
July 6, 1832 – May 29, 1893
Altona, Germany – Würzburg, Germany
German invertebrate zoologist. After taking his degree he made an extensive expedition to Palau and the Philippines, where he made important collections of invertebrates. Later he became a professor at Würzburg, and he and his students made significant contributions to comparative anatomy. He was highly critical of Darwin’s coral reef theory.
References: Rupp-Eisenreich in DD, Mayr in DSB.

Sharpe, Daniel
April 6, 1806 – May 31, 1856
English geologist. His work on cleavage and foliation was important for Darwin. He described Darwin’s brachiopods from the Falkland Islands.
References: EB13.

Siebold, Carl Theodor Ernst von
February 16, 1804 – April 7, 1885
Würzburg, Germany – Munich, Germany
German zoologist, professor at Freiburg, Breslau and Munich. His work on parthenogenesis was of great interest to Darwin.
References: Geus in DSB.

Sismondi, Jean Charles Leonard de
May 9, 1773 – June 25, 1842
Geneva, Switzerland – Geneva, Switzerland
Swiss political economist and historian. He married Emma Wedgwood Darwin’s mother’s sister Jessie. Darwin evidently read his *Principes d’Économie Politique*.
References: EB13.
Smellie, William
February 5, 1697 – March 5, 1763
Lanarkshire, Scotland – Lanark, Scotland
Scottish male midwife and naturalist. Darwin read the 1790 edition of his *Philosophy of Natural History*. He did not think highly of it, but annotated it for information on the reproduction of mammals and birds.
References: ODNB.

Smith, Adam
June 5, 1723 – July 17, 1790
Kirkcaldy, Scotland – Edinburgh, Scotland
Scottish economist and philosopher, author of *The Wealth of Nations*, which Darwin may have read. His book *The Theory of Moral Sentiments* was fundamental to Darwin’s ideas about the evolution of society discussed in *The Descent of Man*.
References: EB13.

Smith, Frederick
December 30, 1805 – February 16, 1879
English entomologist who worked in the zoology department at the British Museum. He identified Hymenoptera for Darwin’s orchid research.
References: BAE.

Smith, James Edward (Sir)
December 2, 1759 – March 17, 1828
Norwich, Norfolk, England – Norwich, England
English physician and botanist, founder of the Linnean Society. Darwin cites his publications in *Flowers*.
References: RD.

Sowerby, George Brettingham
May 12, 1788 – July 26, 1854
English conchologist, author of *The Genera of Recent and Fossil Shells* (1820–1825). He identified shells discussed in Darwin’s book on South America.
References: Newman 1993, Woodward in DNB.

Sowerby, George Brettingham, Jr.
March 25, 1812 – July 26, 1884
English conchologist and illustrator. The son of George Brettingham Sowerby, he was author of the *Conchological Manual*. He illustrated much of Darwin’s work on barnacles, namely *Living Lepadidae*, *Living Balanidae*, and *Fossil Balanidae* and also the book on *Orchids*.
References: Newman 1993, Woodward in DNB, Cleevely in ODNB.

Sowerby, James
March 21, 1757 – October 25, 1822
English natural history artist. He founded the *Mineral Conchology of Great Britain*, to which Darwin refers.
References: EB13, Woodward in DNB, Cleevely in ODNB.

Sowerby, James de Carle
June 5, 1787 – August 26, 1871
English botanist and paleontologist, the brother of George Brettingham Sowerby. He illustrated Darwin’s monograph on *Fossil Lepadidae*.
References: RD; Woodward in DNB, Cleevely in ODNB.

Spallanzani, Lazzaro
January 10, 1729 – February 12, 1799
Scandiano, Modena, Italy – Pavia, Italy
Italian philosopher and biologist, professor at Modena and later at Pavia. He was a major figure in the controversy over spontaneous generation. Darwin read his work on reproduction.
References: EB 13.

Spencer, Herbert
April 27, 1820 – December 8, 1903
Derby, England – Brighton, England
English social philosopher. Although he is known for having advocated a kind of evolutionism in publications that appeared prior to 1859, he did so as a philosopher rather than a natural scientist. He presented a vast evolutionary scheme in a multi-volume *Synthetic Philosophy*. During his lifetime his works were widely read and very influential. Although Darwin did not say so in public, he did not think very highly of Spencer’s contribution or what he called his “deductive” approach. (See the unexpurgated version of Darwin’s *Autobiography*.) Darwin mentions him in the *Historical Sketch* in later editions of the *Origin*.
References: Peel in DSB.
Sprengel, Christian Konrad
September 22, 1750 – April 7, 1816
Brandenberg, Germany – Berlin, Germany
German botanist. Sprengel’s book with the quaint title *Das Entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen* (*The Mystery of Nature Revealed in the Structure and in the Fertilization of Flowers*) was a very important source for Darwin’s work on pollination biology. It is largely thanks to Darwin’s praise for the book that Sprengel gets credit for his pioneering research.

References: King in DSB.

Stainton, Henry Tibbats
August 13, 1822 – December 2, 1892
English businessman, an amateur entomologist.

References: RBF, BAE.

Stebbing, Thomas Roscoe Rede (Reverend)
February 6, 1835 – July 8, 1925
Anglican clergyman and marine biologist, an expert on Crustacea. He was a supporter of evolutionary ideas, which he believed could be reconciled with religion.

References: RBF, Mills in DSB.

Steenstrup, [Japetus] Johannes [Smith]
March 8, 1813 – June 20, 1897
Vang, Denmark – Copenhagen, Denmark
Danish zoologist and paleontologist. He provided Darwin with a great deal of help with fossil cirripedes. His ideas on hermaphroditism and other aspects of reproduction were also of considerable interest to Darwin.

References: Newman 1993, Müller in DSB.

Stephen, Leslie
November 28, 1832 – February 22, 1904
English biographer and literary critic. He took a considerable interest in evolution, especially its relationship to ethics. He advised Darwin not to reply to Samuel Butler.

References: EB13.

Stephens, James Francis
September 16, 1792 – December 22, 1852
Shoreham, Sussex, England – Kennington, England
London entomologist who worked at the British Museum. He was the author of *Illustrations of British Entomology*.

References: RBF, Woodward in DNB.
much influence upon the scientific community. In 1840 he ceased to write on systematics and retired to New Zealand.

References: McMillan in DSB.

Swinhoe, Robert
September 1, 1836 – October 28, 1877
Calcutta, India – London, England
English amateur botanist, author of a floral list from Formosa. He was consul at Taiwan in 1865 and at Ning-po from 1873 to 1876. He sent Darwin specimens of domesticated animals and other material.

Taine, Hippolyte Adolphe
April 21, 1828 – March 5, 1893
Vouziers, France – Paris, France
French literary historian, philosopher and psychologist, author of *On Intelligence*. He was strongly influenced by evolutionists, including Darwin. His paper in *Mind* stimulated Darwin to publish his own observations on the behavioral development of his oldest son, William.

References: EB13.

Tait, Robert Lawson
1845 – June 13, 1899
Edinburgh, Scotland – Birmingham, England
English physician, surgeon and gynecologist. Darwin cites his remarks on natural selection in civilized nations.

References: RBF, Pagel in ODNB.

Tait, William Chester
June, 1844 – April 7, 1928
Oporto, Portugal – Oporto, Portugal
Botanist, whose family was in the wine-export business. He provided *Drosophyllum* for Darwin’s work on insectivorous plants.

References: RD, RBF.

Tegetmeier, William Bernhard
November 4, 1816 – November 19, 1912
Coinbrook England – Hampstead, England
English ornithologist and pigeon-fancier, a successful author, trained as a surgeon. He and Darwin had extensive correspondence, and he supplied Darwin with specimens used in the study of variation. He also helped Darwin with his work on bee cells.

References: RBF, Secord in DNB.
Scottish marine biologist, professor at Edinburgh from 1870. He made valuable contributions to the study of the deep-sea fauna, and was scientific director of the Challenger Expedition. Darwin responded in print to some of his criticisms.

References: Thomas in DSB.

Thomson, William (Lord Kelvin): See Kelvin

Thwaites, George Henry Kendrick
July 9, 1811 – September 11, 1882
Bristol, England – Kandy, Ceylon
English botanist, director of Peradeniya Ceylon botanic garden. An important correspondent, he sent Darwin materials for work on flowers.

References: RBF, RD.

Tournefort, Joseph Pitton de
June 3, 1656 – November 28, 1708
Aix-en-Provence, France – Paris, France
French systematic botanist.

References: Leroy in DSB.

Treviranus, Ludolph Christian (Prof.)
September 18, 1779 – May 6, 1864
Bremen, Germany – Bonn, Germany
German botanist, not to be confused with his older brother, Gottfried Reinhold. He confirmed some of Darwin's findings on orchids.

References: Smit in DSB.

Trimen, Henry
October 26, 1843 – October 16 1896
English botanist, brother of Roland Trimen. He worked at the British Museum from 1869 to 1879 and subsequently became the director of the botanical garden at Peradeniya, Ceylon.

References: RD.

Trimen, Roland
October 29, 1840 – July 25, 1916
English entomologist, brother of Henry Trimen. He provided Darwin with information about orchid fertilization and related topics from the Cape of Good Hope.

References: DD.

Turner, William (Sir)
January 7, 1832 – February 15, 1896

Lankaster, England – Edinburgh, Scotland
English anatomist. An important informant for Darwin about anatomical matters, including rudimentary organs, for the Descent.

References: RBF.

Tylor, Edward Burnett (Sir)
October 2, 1832 – January 2, 1917
English anthropologist. His Researches on the Early History of Mankind (1865, ed. 2 1870) is a classic. In his Primitive Culture (1871) he gave an important definition of the term 'culture' that is still widely quoted. Darwin's copies of both books are lightly annotated. In the Variation Darwin cites an essay by him on consanguineous marriages.

References: EB13.

Tyndall, John
August 2, 1820 – December 4, 1893
Leighlinbridge, County Carlow, Ireland – Hindhead, Surrey, England
Irish physicist, natural philosopher and popular science writer. He was a close friend of Thomas Henry Huxley and Herbert Spencer and an advocate of scientific naturalism.

References: MacLeod in DSB, EB13.

U

Unger, Franz
November 30, 1800 – February 13, 1870
Near Leutschach, Austria – Graz, Austro-Hungarian Empire
Austrian botanist and paleontologist, professor at Graz, and from 1850 in Vienna. He was author of Versuch einer Geschichte der Pflanzenwelt (Vienna, 1852). Darwin mentions him in the Historical Sketch in later editions of the Origin.

References: Olby in DSB.

V

Van Mons, Jean Baptiste
November 11, 1765 – September 6, 1842
Brussels, (now) Belgium – Louvain, Belgium
Chemist and horticulturist.

References: BDB.

Vilmorin, Henri Leveque de
February 26, 1843 – August 23, 1899
Paris, France – Verrières-le-Buisson, France
Son and successor of of Louis Vilmorin. References: BDB.

Vilmorin, Pierre Louis François Leveque de
April 18, 1816 – March 21, 1860
Paris, France – Paris, France
French plant breeder, the proprietor of Vilmorin-Andrieux et Cie, an important seed dealership. References: Simpkins in DSB.

Vines, Sydney Howard (Dr.)
December 31, 1849 – April 4, 1934
Ealing, England – Exmouth, England
English botanist on the staff of Cambridge University. He provided Darwin with information about plant physiology for such topics as insectivorous plants. References: RBF.

Virchow, Rudolf Carl
October 13, 1821 – September 5, 1902
Schivelbein, Germany – Berlin, Germany
German physician and pathologist, professor at Berlin. His important book on cellular pathology was of interest to Darwin in relation to theories of generation and development. References: Risse in DSB.

Vogt, Carl Christopher (Professor)
July 5, 1817 – May 5, 1895
Giessen, Germany – Geneva, Switzerland
German zoologist. A professor at Giessen, he had to relocate in Geneva for political reasons after 1848. He was an influential materialist philosopher and a strong supporter of Darwin. Although not an evolutionist at the time, he had translated Robert Chambers’ *Vestiges of the Natural History of Creation* into German. There are extensive references to his contributions to physical anthropology in *The Descent of Man*. References: Pilet in DSB.

Vries, see De Vries

Wagner, Johann Andreas
March 21, 1797 – December 17, 1861
Nürnberg, Germany – München, Germany
German zoologist and paleontologist, professor at München. He was strongly critical of Darwin’s views. References: GHG.

Wagner, Moritz
October 3, 1813 – May 31, 1887
Beyreuth, Germany – München, Germany
German zoologist. He considered isolation a necessary condition for evolutionary change, an idea that Darwin rejected. References: RBF, Mayr in DD.

Walker, Alexander
December 20, 1779 – December 6, 1852
Edinburgh, Scotland – Edinburgh, Scotland
Scottish medical writer. His book on *Interrmarriage* (1838) attracted Darwin’s attention early on and he annotated his copy heavily. He was also author of books on neurophysiology and related topics. References: Hartley in DNB.

Walker, Francis
July 31, 1809 – October 5, 1874
English entomologist who worked at the British Museum. For taxonomic descriptions he was paid a shilling per new species and a pound per new genus. The result was a world record of 20,000 species. As one might expect, the quantity of his output was to some extent offset by the amount of harm he did. Walker described many of the insects from the *Beagle* voyage and identified Diptera for Darwin’s work on orchids. References: Lindroth 1973, obituary in *Entomologists’ Monthly Magazine* 11:140-141 (1874).

Wallace, Alexander
1830 – October 1, 1899

Wallace, Alfred Russel
January 8, 1832 – November 7, 1913
Usk, Monmouthshire, Wales – Broadstone, Dorset, England
British naturalist. Although best known as the co-discoverer of natural selection, Wallace was an outstanding biologist in his own right. His vast experience collecting natural history specimens in
South America and the Malay Archipelago put him in an excellent position to support the theory of natural selection and to place biogeography on a solid evolutionary foundation.

Walsh, Benjamin Dann
September 21, 1808 – November 18, 1869
Entomologist. Born in England, he immigrated to the United States and ultimately had enough private means to devote most of his time to science. They were introduced when Darwin was a student at Cambridge, where Walsh became a Fellow. An important supporter of Darwin, he criticized the views of Louis Agassiz. Walsh provided Darwin with much useful information about insects, particularly with respect to sexual selection.

Waterhouse, George Robert
March 6, 1810 – January 21, 1888
Somers Town, England – ?
English naturalist. He was curator at the Zoological Society from 1836 to 1843, and until his retirement was on the staff of the British Museum. Waterhouse described the living mammals from Darwin’s Beagle voyage and many of the insects as well. They engaged in important correspondence on principles of classification. Darwin reviewed Waterhouse’s book on Mammalia in 1847.

References: CCD.

Watson, Hewett Cottrell
May 9, 1804 – July 27, 1881
Firbeck, Yorkshire, England – Thames Ditton, Surrey, England
English botanist and phrenologist. Watson studied Medicine at Edinburgh from 1828 to 1832. He resigned as editor of The Phrenological Journal in 1840. From 1859 onward he mainly worked on the distribution of British plants, a topic on which he was a leading authority. He was considered a curmudgeon. His early discussions of evolution are said to have impressed Darwin.

References: RD.

Way, Albert
June 23, 1805 – March 22, 1874
Bath, England – Cannes, France
Friend of Darwin as a Cambridge undergraduate. They collected beetles together. An antiquary, he gave Darwin information about breeds of horses.

References: RBF, Wroth in DNB.

Weddell, Hugh Algernon (Dr.)
June 22 1819 – July 22, 1877
Plainswick, Gloucester, England – Poitiers, France
English physician and botanist. Darwin cited his work in Flowers.

References: RD.

Wedgwood, Emma
May 2, 1808 – October 2, 1896
Maer Hall, Staffordshire, England – Down House, Kent, England
Daughter of Josiah Wedgwood II. A first cousin of Charles Darwin, she became his wife on January 29, 1839.

Wedgwood, Francis
1800-1888
Maer Hall, Staffordshire, England – Barlaston, Staffordshire, England
The third son of Josiah Wedgwood II, older brother of Emma Darwin and Charles Darwin’s brother-in-law as well as his cousin. He took over the Wedgwood pottery business upon the retirement of his father. He lived at Barlaston in Staffordshire.

Wedgwood, Henry
1799 – 1885
The second son of Josiah Wedgwood II. Older brother of Emma Darwin and Charles Darwin’s brother in law.

Wedgwood, Hensleigh
January 22, 1803 – June 2, 1891
English barrister and philologist, author of A Dictionary of English Etymology and The Origin of Language (1866). The 4th (and youngest) son of Josiah Wedgwood II, and also Emma Darwin’s older brother, he therefore was both Charles Darwin’s brother-in-law and cousin. He became a spiritualist late in life.

References: Herford and Haigh in DNB.

Wedgwood, Josiah (I)
July 12, 1730 – January 3, 1795
Burslem, England – Etruria, England
English Industrialist, founder of the Wedgwood pottery firm. He was the maternal grandfather of Charles Darwin.

References: Dorn in ODNB.

Wedgwood, Josiah (II) (“Uncle Jos.”)
1769 – July 12, 1843
Etruria, England – Maer, England
Maternal uncle of Charles Darwin, brother of his mother and father of his wife. It was he who convinced Robert Waring Darwin that he should allow Charles to accept the invitation to serve as unofficial naturalist on the Beagle.

Wedgwood, Josiah (III)
1795 – 1880
Etruria, England – Leith Hill Place, England
The oldest son of Josiah Wedgwood II, and brother of Emma Darwin. Upon marrying Caroline Darwin in 1837 he became Charles Darwin’s brother-in-law. He was a partner in the Wedgwood firm at Etruria from 1841 to 1844, after which time he moved to Leith Hill Place in Surrey.

Wedgwood, Susannah
January 3, 1765 – July 15, 1817
Etruria, England – Shrewsbury, England
Mother of Charles Darwin. She died when he was only eight years old. Evidently the experience was very traumatic and Darwin seems to have suppressed much of his memory of her.

Weir, John Jenner
1822 – 1894
English accountant and naturalist. He was an important source of information for aspects of bird reproduction discussed in Descent.

Weismann, August
January 17, 1834 – November 5, 1914
Frankfurt am Main, Germany – Freiburg im Breisgau, Germany
German zoologist and evolutionist, Professor of zoology at Freiburg. A strong supporter of natural selection, he denied the existence of the inheritance of acquired characters, and propounded the theory of the continuities of the germ-plasm to reject Lamarckian mechanisms generally. He is considered the founder of “neo-Darwinism” as a movement. Darwin wrote a preface to the English translation of one of his books.

References: Robinson in DSB.

Wells, William Charles (Dr.)
May 24, 1757 – September 18, 1817
Charleston, South Carolina, USA – London, England
British physician and natural scientist, author of a prize-winning Essay on Dew (1814). His Account of A Female of the White Race of Mankind, part of whose Skin Resembles that of a Negro (1818) attracted Darwin’s attention as a proto-evolutionary work. Darwin considered Wells to have discussed natural selection in that work. However, the amount of change that Wells invoked was limited. Darwin mentions him in the Historical Sketch in later editions of the Origin.

References: Dock in DSB, Moore and Berg in DNB.

Westwood, John Obadiah
December 22, 1805 – January 2, 1893
English entomologist, Hope Professor in Oxford University. Author of A Modern Introduction to the Classification of Insects, he was the most erudite entomologist of his day. Together with Darwin he was one of the signatories of the Strickland code of zoological nomenclature. He was opposed to Darwinism. Darwin cites him in the Origin of Species in connection with geographic variability of insects.

Wetherell, Nathaniel Thomas
September 6, 1800 – December 22, 1875
Highgate, Middlesex, England – Highgate, Middlesex, England
English surgeon and geologist. He owned an important London Clay fossil collection, and lent Darwin specimens of fossil barnacles.

References: GHG, George in DNB.

Whately, Richard (Archbishop)
February 1, 1787 – October 8, 1863
Dublin, Ireland – near Dublin, Ireland
British clergyman and philosopher, archbishop of Dublin.
References: Brent in DNB.

Whewell, William (Professor, Reverend)
May 24, 1794 – March 6, 1866
Lanester, England – Cambridge, England
Physicist and historian and philosopher of science, professor of mineralogy at Cambridge. His philosophy was influential on Darwin’s thinking about scientific methodology. However, his philosophy,
influenced by Kant, seems to have been a bit too
idealistic for Darwin’s taste. Darwin was more
strongly influenced by John Herschel. Darwin
quotes him on laws of nature at the front of the
Origin of Species. Likewise he quotes him on the
value of hypotheses when he presents his ideas
about pangenesis in *The Variation of Animals and
Plants under Domestication*.

References: Butts in DSB, Yeo 1993.

White, Adam

April 28, 1817 – January 4, 1879

Assistant in the Zoology Department of the British
Museum from 1835 to 1863, when he retired
because of mental health problems. Darwin wrote
a letter of reference for him for a chair at
Edinburgh.

References: RBF.

White, Gilbert

July 18, 1720 – June 26, 1793

Selborne, Hampshire, England – Selborne, Hamp-
shire, England

English clergyman and naturalist. His *Natural
History of Selborne* was much admired by Darwin
as it has been by many others.

References: Groves in DSB.

Wichura, Max Ernst

January 27, 1817 – 24 or 25 January, 1866

Neisse, Germany – Berlin, Germany

German lawyer and amateur botanist. He did important
work on floral biology. Darwin annotated his book
on plant hybridization and cited it.

References: DD.

Wickham, John Clements

1798 – January 6, 1864

English naval officer. He and his former shipmate
from the *Beagle*, James Sulivan, visited Darwin at
Down on October 21, 1861. In 1862 he retired to
the south of France.

Wiesner, Julius von (Professor)

January 20, 1838 – October 9, 1916

Tschechen, Moravia – Vienna, Austria

Austro-Hungarian plant physiologist, professor at
Vienna. After receiving his Ph.D. at Jena in 1860,
he held various posts at Vienna until his retirement
in 1909. He corresponded with Darwin about plant
movement.

References: Biebel in DSB.

Wigand, Julius Wilhelm Albert (Professor)

April 21, 1821 – October 22, 1886

Treyxa, Hessen, Germany – Marburg, Germany

German botanist, professor at Marburg. An opponent
of Darwinism, he criticized, among other things,
pangenesis.

Wilberforce, Samuel (Bishop) (“Soapy Sam”)

September 7, 1805 – July 19, 1873

English clergyman who had some background in
mathematics. A debate in which he participated at
the meeting of the British Association for the
Advancement of Science at Oxford in 1860 has
taken on somewhat of a legendary character. His
exchange with Huxley created a sensation, but
Hooker was more effective at debating the issues.
He did not believe that he had been beaten.

References: Meacham 1970.

Wolf, Caspar Friedrich

January 18, 1734 – February 22, 1794

Berlin, Germany – St. Petersburg, Russia

German embryologist.

References: Gaissiovitch in DSB.

Wollaston, Thomas Vernon

March 9, 1821 – January 4, 1878

Scotter, Linconshire, England – Teignmouth,
England

English entomologist. Although not an evolutionist or
supporter of natural selection, he was a student of
variation in nature and believed that species have
locally-adapted races. He and Darwin discussed
such matters both in conversation and in corre-
spendence. Darwin asked him for information
about sexual combat in insects and other topics.
Important works by Wollaston include *Insecta
Maderensia* (1854) and *On the Variation of
Species* (1856), which was dedicated to Darwin.

References: BAE.

Wood, Searles Valentine

February 14, 1798 – October 26, 1880

Woodbridge, England – Martelsham, England

English geologist and banker.

References: GHG.

Woodward, Henry

November 24, 1842 – September 6, 1921

Norwich, England – Bushey, England
English paleontologist, the youngest son of Samuel Woodward. He worked at the British Museum, and was an expert on fossil arthropods. References: GHG, EB13.

Woodward, Horace Bolingbroke
1848 – February 5, 1914
English geologist, the son of Samuel Pickworth Woodward. He worked for the Geological Survey. References: GHG.

Woodward, Samuel
October 3, 1790 – January 14, 1838
Norwich, England – Norwich, England
English geologist and antiquary. References: GHG.

Woodward, Samuel Pickworth
September 17, 1821 – July 11, 1865
Norwich, England – Herne Bay, England
English geologist and malacologist, author of *A Manual of the Mollusca*. He was the second son of Samuel Woodward. He worked at the British Museum. References: GHG.

Wright, Chauncey
September 20, 1830 – September 12, 1875
Northampton, Massachusetts, USA – Cambridge, Massachusetts, USA
American mathematician and philosopher. He supported Darwin and defended natural selection against the attacks of Mivart. References: RBF, EB13.

Wyman, Jeffries
August 11, 1814 – September 4, 1874
Chelmsford, Massachusetts, USA – Bethlehem, New Hampshire, USA
American paleontologist, trained as a physician, a Harvard professor. He corresponded extensively with Darwin about various possible examples of natural selection and some of these are cited in the *Origin*. References: RBF, Dupree in DSB.

Y

Yarrell, William
June 3, 1784 – September 1, 1856
London stationer, bookseller and naturalist. He helped Darwin to obtain equipment for the *Beagle* voyage. He was author of *A History of British Fishes* (1835 and 1836) and *A History of British Birds* (1843). References: RBF, Edwards in ODNB.

Z

Zacharias, [Emil] Otto
January 27, 1846 – October 2, 1916
Leipzig, Germany – Kiel, Germany
German freshwater biologist. Darwin, in a letter to him written in 1877, says that he believed in the permanence of species while on the *Beagle*. References: Freeman, Rupp-Eisenreich in DD.

Zollinger, Heinrich
March 22, 1818 – May 19, 1859
Dutch naturalist and scientific traveler. He worked on biogeography and the geology of islands. References: DD.
Darwin Bibliographies

Part I. Publications of Charles Darwin

Darwin, Charles, 1838-1843. The Zoology of the Voyage of H.M.S. Beagle, under the Command of Captain Fitzroy, R.N., during the Years 1832 to 1836. London: Smith, Elder, i + vii + 156 p.; Pl. I-L.

Waterhouse, George, and Darwin, Charles, 1838-1839. Mammalia, Described by George Waterhouse, with a Notice on their Habits and Ranges by Charles Darwin, Part II. of The Zoology of the Voyage of H.M.S. Beagle, under the Command of Captain Fitzroy, R.N., during the Years 1832 to 1836. London: Smith, Elder, ix + 97 p.; Pl. I-XXXV.

Darwin, Charles, 1840. On the connexion of certain volcanic phenomena in South America: and on the formation of mountain chains and volcanos, as the effect of the same power by which continents are elevated. Transactions of the Geological Society of London, v. 5, no. 3, p. 601-631; Pl. XLIX.

Darwin, Charles, 1852[1851]. A Monograph on the Sub-Class Cirripedia, with Figures of all the Species. The Lepadidae; or, Pedunculated Cirripedes. London: Ray Society, vii + 400 p.; Pl. I-X.

Darwin, Charles, 1855[1854]. A Monograph on the Sub-Class Cirripedia, with Figures of all the Species. The Balanidae (or sessile Cirripedes); the Verrucidae, Etc., Etc., Etc. London: Ray Society, viii + 684 p.; Pls. I-XXX.

Darwin, Charles, 1860. Do the Tineina or other small moths suck flowers, and if so, what flowers? Entomologists' Weekly Intelligence, v. 8, no. 195, p. 103.

Darwin, Charles, 1862. On the two forms, or dimorphic condition, in the species of Primula, and on their remarkable sexual relations. Journal of the Proceedings of the Linnaean Society (Botany), v. 6, p. 77-96.
Darwin, Charles, 1866. Note on page 358 in George Henslow’s Note on the structure of Indigofera, as apparently offering facilities for the intercrossing of distinct flowers. [With additional notice of Dr. Hildebrand’s Papers on Medicago, Indigovera, and Cytisus, in the Botanische Zeitung, March 1866; and a communication from Mr. Darwin on the common broom (Cytisus scoparius).]. Journal of the Linnaean Society of London (Botany), v. 9, p. 355-358.

Lyell, Charles; Darwin, Charles; Bentham, George; Holland, Henry; Burrows, George; Busk, George; Rawlinson, H. C.; Paget, James; Sottiswoode, William; Huxley, T. H., and Tyndall, John, 1872. Mr. Ayerton and Dr. Hooker. Nature, v. 6, p. 211-216.

Darwin, Charles, 1877. The Various Contrivances by which Orchids are Fertilised by Insects [2nd ed.]. London: John Murray, xvi + 300 p.; 1st ed. 1862.

Darwin, Charles, 1881. A letter was read at the recent Social Science meeting at Saratoga from Mr. Charles Darwin to Mrs. Emily Talbot, in response to her inquiries as to the investigation of the mental and bodily development of infants. Nature, v. 24, p. 565.

Darwin, Charles, 1881. Mr. Darwin on vivisection. Times, p. 11.

Part II. Publications Based on Darwin’s Collections

Bell, Thomas, 1842-1843. Reptiles, by Thomas Bell, Part V. of The Zoology of the Voyage of H.M.S. Beagle, under the Command of Captain Fitzroy, R.N., during the Years 1832 to 1836. London: Smith, Elder, viii + 51. p.; Pl. I-XX.
Berkeley, Miles Joseph, 1845. On an edible fungus from Tierra del Fuego, and an allied Chilean species. Transactions of the Linnean Society of London, v. 19, p. 37-43; Pl. IV.

Forbes, Edward, 1846. Descriptions of Secondary fossil shells from South America, in Darwin, C., Geological

Henslow, John Stevens, 1837. Description of two new species of Opuntia; with remarks on the structure of the fruit of Rhipsalis. Magazine of Zoology and Botany, v. 1, p. 466-469.

Jenyns, Leonard, 1840-1842. Fish. Part IV of The Zoology of the Voyage of H.M.S. Beagle, under the Command of Captain Fitzroy, R.N., during the Years 1832 to 1836. London: Smith, Elder, i + 156 p.; Pl. I-L.

Sulloway, Frank J., 1982. The Beagle collections of Darwin’s finches (Geospizinae). Bulletion of the British Museum (Natural History), v. 43, no. 2, p. 49-94; (Zoology Series.).

Waterhouse, George R., 1838. On a new species of the
Part III. Secondary References

Allen, Garland E., 1983. The several faces of Darwin: materialism in nineteenth and twentieth century evolutionary theory. Ch. 5 in Bendall, D. S., ed., Evolution from...
University Press, viii + 747 p.

Butkhardt, Frederick; Porter, Duncan M.; Dean, Sheila Ann; Evans, Samantha; Innes, Shelly; Pearn, Alison; Slater, Andrew, and White, Paul, 2005. The Correspondence of Charles Darwin. Cambridge: Cambridge University Press, v. 15, 1867, xlii + 705 p.
Butkhardt, Frederick; Porter, Duncan M.; Dean, Sheila Ann; Evans, Samantha; Innes, Shelly; Pearn, Alison M.; Slater, Andrew; White, Paul, and Wilmot, Sarah, 2002. The Correspondence of Charles Darwin 1865. Supplement to the Correspondence 1822-1864. Cambridge: Cambridge University Press, v. 13, xl + 695 p.
Butkhardt, Frederick; Porter, Duncan M.; Dean, Sheila Ann; Evans, Samantha; Innes, Shelly; Slater, Andrew; Pearn, Alison M., and White, Paul, 2005. The Correspondence of Charles Darwin 1866. Cambridge: Cambridge University Press, v. 14, xxxxii + 655 p.
Butler, Samuel, 1879. Evolution, Old and New; or, the Theories of Buffon, Dr. Erasmus Darwin, and Lamarck, as Compared with that of Mr. Charles Darwin. London: Hardwicke and Bogue, xii + 384 p.

Catlett, Stephen, 1984. Huxley, Hutton and the "white
Castle, W. E., 1909. The behavior of unit characters in
Caspari, Ernst, 1972. Sexual selection in human popula-
Chamberlain, T. C., 1909. Introduction,
Chancellor, Gordon; DiMauro, Angelo; Ingle, Ray, and
Challinor, J., 1959. Palaeontology and evolution, ch. 2

Facial expression in infants and children, ch. 3 in
Ekman, P., ed., Darwin and Facial Expression: a
Century of Research in Review. New York: Academic
Press, p. 91-168.
Chevalier-Skolnikoff, Suzanne, 1973. Introduction, ch. 3 in
Ekman, P., ed., Darwin and Facial Expression: a
Century of Research in Review. New York: Academic
Press, p. 11-89.
Chorley, R. J.; Dunn, A. J., and Beckinsale, R. P., 1964. The
History of the Study of Landforms: or the Development
of Geomorphology. New York: John Wiley and Sons,
v. 1, xvi + 768 p.
Christen, Yves, 1981. Marx et Darwin: le Grand Affron-
Christen, Yves, 1982. Le Dossier Darwin: la Sélection
Naturelle-l’Eugénisme, la Sociobiologie, le Darwinism
and Vorzimmer, 1970]. Victorian Studies, v. 16, p. 257-
261.
Biological Journal of the Linnean Society, v. 17, p. 45-
68.
Claeys, Gregory, 2000. The “survival of the fittest” and the
origins of social Darwinism. Journal of the History of
Ideas, v. 61, p. 223-240.
Clark, J. F. M., 1997. ‘The ants were duly visited’: making
sense of John Lubbock, scientific naturalism and the
senses of social insects. British Journal for the History
Clark, John Wilis, and Hughes, Thomas McKenny, 1890.
The Life and Letters of the Reverend Adam Sedgwick,
L.L.D., D.C.L., Fellow of Trinity College,
Cambridge, Prebendary of Norwich, Woodwardian
Professor of Geology, 1818-1873. Cambridge:
Cambridge University Press, p. 11-89.
Charles Darwin, 1809-1882: a Centennial Commemor-
Charlesworth, William R., 1992. Darwin and development-
mental psychology: past and present. Developmental
Psychology, v. 28, p. 5-16.

Di Gregorio, Mario A., 1995. A wolf in sheep’s clothing:

Gardiner, B. G., 1990. Clift, Darwin, Owen and the
Dinosauria (2-3). Linnean, v. 7, no. 1, 2, p. 8-14, 14-20.
Gardiner, B. G., 1995. The joint essay of Darwin and
Gardiner, J. S., 1931. Coral Reefs and Atolls. London:
Macmillan, xiii + 181 p.
Gates, Barbara T., 1994. Revisioning Darwin, with sympa-
thy. History of European Ideas, v. 19, p. 761-768.
Gates, Barbara T., 1997. Revisioning Darwin with sympa-
thy: Arabella Buckley, in Gates, B. T., and Shetir, A. B.,
Gatlin, Stephen H., 1995. Charles Darwins Idee der natür-
lichen Selektion im Journal of Medical Science (1859-
Main: Suhrkamp, p. 262-280.
Gaupp, Ernst, 1917. August Weismann: sein Leben und sein
Gayon, Jean, 1996. The individuality of the species: a
Darwinian theory? From Buffon to Ghiselin, and back to
Darwin. Biology and Philosophy, v. 11, p. 215-244.
Gayon, Jean, 1997. The “paramount power of selection”:
from Darwin to Kauffman, in M. L. Dalla Chiara, ed.,
Gayon, Jean, 1998. Darwinism’s Struggle for Survival:
Heredity and the Hypothesis of Natural Selection.
Gayon, Jean, 2003. From Darwin to today in evolutionary
biology, ch. 10 in Hodge, J., and Radick, G., eds., The
Cambridge Companion to Darwin. Cambridge: Cambridge
Geison, Gerald L., 1969. Darwin and heredity: the evolu-
tion of his hypothesis of pangenesis. Journal of
the History of Medicine and Allied Sciences, v. 24, p. 375-
411.
Geison, Gerald L., 1978. Michael Foster and the Cambridg
School of Physiology: the Scientific Enterprise in Late
Press, xxi + 401 p.
Kühlensborn Colloquium on Philosophical and Ethical
Problems of Biosciences. Berlin: Akademie-Verlag,
Abhandlungen der Akademie der Wissenschaften der
DDR, Abteilung Mathematik-Naturwissenschaften-
George, Wilma, 1964. Biologist Philosopher: a Study of the
Life and Writings of Alfred Russel Wallace. London:
Abelard-Schuman, xiii + 320 p.
Gerstaecker, A., 1866-1879. Die Klassen und Ordnungen
der Arthropoden wissenschaftlich dargestellt in Wort
und Bild. Crustacea [1st ed.], 5:1. of Die Klassen und
Ordnungen des Thier-Reichs wissenschaftlich dar-
p.; Taf. I-XLIX.
Gessinger, Joachim, 1992. Charles Lyell und Charles
Darwin: Aktualismus und Evolution in der Geschichte
der Sprachen, in Naumann, B.; Plank, F., and Hofbauer,
G., eds., Language and Earth: Elective Affinities
between Emerging Sciences of Linguistics and Geology.
Amsterdam: Benjamins.
Ghiara, Gianfranco, 1984. Il Darwinismo nel Pensiiero
Ghiselin, Michael T., 1969. The Triumph of the Darwinian
Method. Berkeley: University of California Press, x +
287 p.
Ghiselin, Michael T., 1971. The individual in the Darwinian
Ghiselin, Michael T., 1973. Mr. Darwin’s critics, old and
Ghiselin, Michael T., 1973. Darwin and evolutionary psy-
Ghiselin, Michael T., 1974. The Economy of Nature and the
Evolution of Sex. Berkeley: University of California
Press, xii + 364 p.
Ghiselin, Michael T., 1974. (Untitled comment on a paper
by Derek Freeman). Current Anthropology, v. 15,
p. 224.
Genetics, v. 79, p. 47-57.
Ghiselin, Michael T., 1976. Two Darwins: history versus
criticism. Journal of the History of Biology, v. 9, p. 121-
132.
Ghiselin, Michael T., 1979. Has human ethology rediscover-
er Darwinism? The Behavioral and Brain Sciences, v.
2, p. 33-34.
Ghiselin, Michael T., 1980. The failure of morphology to
assimilate Darwinism, in Mayr, E., and Provine, W. B.,
eds., The Evolutionary Synthesis. Cambridge: Harvard
Ghiselin, Michael T., 1982. [Review of] The Descent of
Man, and Selection in Relation to Sex. By Charles
Darwin 1871. Facsimile reprint of the first edition edit-
ed and with an introduction by John Tyler Bonner &
Ghiselin, Michael T., 1982. The intellectual path to natural
Ghiselin, Michael T., 1984. The triumph of the Darwinian
method [2nd ed.]. Chicago: University of Chicago
Press, xii + 287.
Ghiselin, Michael T., 1984. Foreword to The Various
Contrivances by which Orchids are Fertilised by Insects,
by Charles Darwin (1863). Chicago: University of

Glick, Thomas F., 1989. Darwin y el Darwinismo en el
Gruber, Howard E., and Gruber, Valmai, 1962. The eye of reason: Darwin’s development during the Beagle voy-
Gruber, Jacob W., 1969. Who was the Beagle’s naturalist? British Journal for the History of Science, v. 4, p. 266-282.
Hanson, Bert, 1970. The early history of the glacial theory

Sciences, v. 22, p. 3-22.
Kühn, Alfred. 1950. Anton Dohrn und die Zoologie seiner Zeit. Pubblicazioni della Stazione Zoologica di Napoli,

Lefèvre, George, 1901. The advance of zoology in the nine-
Lovejoy, Arthur O., 1959. Buffon and the problem of
Lombardi, Franco, 1983. L'importanza di Darwin per la
Lövtrup, Soren, 1977. La crise du darwinisme. Recherche,
Livingstone, David N., 1997. Darwin in Belfast,
Livingstone, David N., 1992. Darwinism and Calvinism:
Lloyd, Elisabeth A., 1983. The nature of Darwin's support
in the theory of natural selection. Philosophy of Science,
Loeb, Jacques, 1909. Experimental study of the influence of environment on animals, ch. XIV in Seward, A. C., ed.,
Lövtrup, Soren, 1977. La crise du darwinisme. Recherche,
v. 8, p. 642-649.
Richards, R. J., and Ruse, M., eds., Darwinian Heresies.
Lyell, Katherine M., 1881. Life, Letters and Journals of Sir
Charles Lyell, Bart. London: John Murray, xi + 475 + ix
+ 489 p.
Lyons, Sherrie L., 1993. Thomas Huxley, fossils, persist-
ence, and the argument from design. Journal of the
History of Biology, v. 26, p. 545-569.
Lyons, Sherrie L., 1999. Thomas Henry Huxley: the
Evolution of a Scientist. Amherst, New York:
Macalister, Alexander, 1926. Physiognomy, in Chisholm,
H., ed., The Encyclopaedia Britannica [13th ed.].
London: The Encyclopaedia Britannica Company, v. 21,
p. 550-552.
Macbeth, Norman, 1971. Darwin Retried: an Appeal to
MacDougald, D. T., 1909. The direct influence of the envi-
ronment, in Anonymous, ed., Fifty Years of Darwinism:
Modern Aspects of Evolution, Centennial Addresses in
Honor of Charles Darwin before the American
Association for the Advancement of Science, Baltimore,
Friday, January 1, 1909. New York: Henry Holt and
Company, p. 114-142.
MacLeod, Roy M., 1965. Evolutionism and Richard Owen,
MacLeod, Roy, 1988. Imperial reflections in the southern
seas: the Funafuti expeditions, 1896-1904, ch. 7 in
MacLeod, R., and Rehbock, P. F., eds., Nature in its
Greatest Extent: Western Science in the Pacific.
MacLeod, Roy, 1994. Embryology and empire: the Balfour
students and the quest for intermediate forms in the lab-
oratory of the Pacific, ch. 5 in MacLeod, R., and
Rehbock, P. F., eds., Darwin’s Laboratory: Evolutionary
Theory and Natural History in the Pacific. Honolulu:
University of Hawaii Press, p. 140-165.
MacLeod, Roy, and Rehbock, Philip F., 1994. Darwin’s
Laboratory: Evolutionary Theory and Natural History in
the Pacific. Honolulu: University of Hawai’i Press, x +
540 p.
MacRae, Donald G., 1958. Darwin and the social sciences,
Magoun, H. W., 1960. Evolutionary concepts of brain func-
tion following Darwin and Spencer, in Tax, S., ed., The
Evolution of Man: Man, Culture and Society, Volume 2
of Evolution after Darwin. Chicago: University of
Magoun, H. W., 1961. Darwin and concepts of brain func-
tion, in Delafransaye, J. F., ed., Brain Mechanisms and
Mainardi, Danilo, 1984. Darwin, Lorenz, l’etologia, in
Ghiara, G., ed., Il Darwinismo nel Pensiero Scientifico
Mamiani, Maurizio, 1984. Darwin, scienza newtoniana,
evoluzione settecentesca, in Ghiara, G., ed., Il
Darwinismo nel Pensiero Scientifico Contemporaneo.
Napoli: Guida, p. 205-216.
Mandelbaum, Maurice, 1958. Darwin’s religious views.
Mandeville, Bernard, 1732. The Fable of the Bees: or,
Private Vices, Publick Benefits. With an Essay on
Charity and Charity-Schools. And a Search into the
477 p.
Mangold, Otto, 1924. Beobachtungen und Experimente zur
Biologie des Regenwurms. I. (Lauterzeugung, Formsinn
und Chemischer Sinn.). Zeitschrift für vergleichende
Manier, Edward, 1978. The Young Darwin and His Cultural
Circle: a Study of Influences which Helped Shape the
Language and Logic of the First Drafts of the Theory of
Natural Selection. Dordrecht: D. Reidel Publishing
Company, xii + 242 p.
Studies in the History and Philosophy of Science, v. 11,
p. 305-323.
Manier, Edward, 1980. History, philosophy and sociology
of biology: a family romance. Studies in the History and
Manier, Edward, 1987. “External factors” and “ideology” in
the earliest drafts of Darwin’s theory. Social Studies of
Manitz, Hermann, 2000. Frühe Stambaummdarstellungen
in der Botanik, in Brömer, R.; Hossfeld, U., and Rupke,
N., eds., Evolutionsbiologie von Darwin bis Heute.
Berlin: Verlag für Wissenschaft und Bildung, p. 89-104.
Vorträge eines Symposiums von 30. bis 31. Oktober
1970 in Frankfurt am Main. Stuttgart: Enke, vii +
163 p.
Manser, A. R., 1965. The concept of evolution. Philosophy,
v. 40, p. 18-34.
Mantegazza, Paolo, 1871. L’elezione sessuale e la neogene-
si. Lettera dal prof. Paolo Mantegazza a Carlo Darwin.
Archivio per l’Antropologia e l’Etnologia, v. 1, p. 306-
325.
Mantegazza, Paolo, 1905. Darwin dopo 50 anni. Archivio
per l’Antropologia e l’Etnologia, v. 35, p. 311-322.
Marchant, James, 1916. Alfred Russel Wallace: Letters and
Reminiscences. New York: Harper & Brothers, viii +
507 p.
Marchiano, Alain, and Pelissier, Maud, 2000. The influence
of Scottish Enlightenment on Darwin’s theory of cultur-
al evolution. Journal of the History of Economic
Thought, v. 22, p. 239-249.
Molari, Carlo, 1984. La teologia cattolica di fronte all'evo-
Mokyr, Joel, 1995. Darwin, la tecnologia e gli economisti:
Mogie, Michael, 1996. Malthus and Darwin: world views
Montalenti, Giuseppe, 1988. L'evoluzione del concetto di
Montalenti, Giuseppi, 1982. Charles Darwin. Roma:
Montalenti, Giuseppe, 1959. Il concetto di selezione ses-
in luzionismo darwinista ieri ed oggi,
in p. 405-424.
Montgomery, William M., 1987. Editing the Darwin corre-
Montgomery, William M., 1984. Darwinismo e antidarwinismo,
Montalenti, Giuseppe, 1959. Il concetto di selezione ses-
Montalenti, Giuseppe, 1984. Darwinismo e antidarwinismo,
Morgan, C. Lloyd, 1909. Mental factors in evolution, ch. XXI in Seward, A. C., ed., Darwin and Modern Science:

Norman, Alfred Merle, 1903. New generic names for some Entomostraca and Cirripedia. *Annals and Magazine of
Natural History, 7, v. 11, p. 367-369.
Osborn, Henry Fairfield, 1926. The problem of the origin of species as it appeared to Darwin in 1859 and as it appears to us today. Science, v. 64, p. 337-341.
Ospovat, Dov, 1981. The Development of Darwin’s Theory:

Popov, Igor, 2003. The concepts of directed evolution...
iv + 558 p.

Pruna, Pedro M., 1984. La recepción de la ideas de Darwin en Cuba durante el siglo XIX. Quipu 1, 369-389.

Regelmann, Johann-Peter, 1984. Theorie und Praxis bei

Ruse, Michael, 1973. The nature of scientific models: formal v material analogy. Philosophy of the Social

Smith, Sydney, 1960. The origin of “the Origin” as discerned from Charles Darwin’s notebooks and his annotations in the books he read between 1837 and 1842. The Advancement of Science, v. 16, p. 391-401.

Stebbins, G. Ledyard, 1966. Variations and adaptations in

Waddington, C. H., 1958. Theories of evolution, ch. 1 in

Supplement to the Secondary Literature

